СП 20.13330.2016

СВОД ПРАВИЛ

НАГРУЗКИ И ВОЗДЕЙСТВИЯ

Loads and actions

OKC 91.040.01

Дата введения 2017-06-04

Предисловие

Сведения о своде правил

- 1 ИСПОЛНИТЕЛИ ЦНИИСК им.В.А.Кучеренко АО "НИЦ "Строительство" при участии ФГБУ "Главная геофизическая обсерватория им.А.И.Воейкова"
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"
- 3 ПОДГОТОВЛЕН к утверждению Департаментом градостроительной деятельности и архитектуры Министерства строительства и жилищно-коммунального хозяйства Российской Федерации
- 4 УТВЕРЖДЕН <u>приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России) от 3 декабря 2016 г. N 891/пр и введен в действие с 4 июня 2017 г.</u>
- 5 ЗАРЕГИСТРИРОВАН Федеральным агентством по техническому регулированию и метрологии (Росстандарт). Пересмотр <u>СП 20.13330.2011</u> "СНиП 2.01.07-85* Нагрузки и воздействия"
- В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в установленном порядке. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования на официальном сайте разработчика (Минстрой России) в сети Интернет

ВНЕСЕНЫ: Изменение N 1, утвержденное и введенное в действие приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 5 июля 2018 г. N 402/пр с 06.01.2019; Изменение N 2, утвержденное и введенное в действие приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России) от 28 января 2019 г. N 49/пр с 29.07.2019; Изменение N 3, утвержденное и введенное в

Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (новая редакция) ИС «Кодекс: 6 поколение» Интранет

действие приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России) от 30 декабря 2020 г. N 897/пр с 01.07.2021; Изменение N 4, утвержденное и введенное в действие приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России) от 30 мая 2022 г. N 430/пр с 30.05.2022; Изменение N 5, утвержденное и введенное в действие приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России) от 14 декабря 2023 г. № 918/пр с 15.01.2024; Изменение № 6, утвержденное и введенное в действие приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России) от 5 сентября 2024 г. № 597/пр с 25.09.2024

Изменения N <u>1</u>, <u>2</u>, <u>3</u>, <u>4</u>, <u>5</u>, <u>6</u> внесены изготовителем базы данных по тексту издания - М.: Стандартинформ, 2018 год; М.: Стандартинформ, 2019; М.: ФГБУ "РСТ", 2022; М.: ФГБУ "РСТ", 2024; М.: ФГБУ "РСТ", 2024

Введение

Настоящий свод правил разработан с учетом обязательных требований, установленных в федеральных законах от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", от 30 декабря 2009 г. N 384-ФЗ "Технический регламент о безопасности зданий и сооружений", и содержит общие технические требования по назначению нагрузок, воздействий и их сочетаний при строительстве новых, расширении, реконструкции и перевооружении действующих предприятий, зданий и сооружений.

Свод правил разработан авторским коллективом ЦНИИСК им.В.А.Кучеренко АО "НИЦ "Строительство" (кандидаты техн. наук *Н.А.Попов*, *И.В.Лебедева*, д-р техн. наук *И.И.Ведяков*) при участии РААСН (д-р техн. наук *В.И.Травуш*) и ФГБУ "Главная геофизическая обсерватория им.А.И.Воейкова" (д-р геогр. наук *Н.В.Кобышева*).

Изменение N 1 выполнено авторским коллективом AO "НИЦ "Строительство" - ЦНИИСК им.В.А.Кучеренко (руководитель разработки - канд. техн. наук *Н.А.Попов*, исполнители - канд. техн. наук *И.В.Лебедева*, д-р техн. наук *И.И.Ведяков*) при участии РААСН (д-р техн. наук *В.И.Травуш*) и ФГБУ "Главная геофизическая обсерватория им.А.И.Воейкова" (д-р геогр. наук *Н.В.Кобышева*).

Свод правил разработан авторским коллективом АО "НИЦ "Строительство" - ЦНИИСК им.В.А.Кучеренко (канд. техн. наук *Н.А.Попов*, канд. техн. наук *И.В.Лебедева*, д-р техн. наук *И.И.Ведяков*) при участии РААСН (д-р техн. наук *В.И.Травуш*), ЗАО "Научно-исследовательский центр СтаДиО" (д-р техн. наук *А.М.Белостоцкий*, д-р техн. наук *П.А.Акимов*, канд. техн. наук *И.Н.Афанасьева*) и ФГБУ "Главная геофизическая обсерватория им.А.И.Воейкова" (д-р геогр. наук *Н.В.Кобышева*)*.

<u>Изменение N 3</u> выполнено авторским коллективом АО "НИЦ "Строительство" - ЦНИИСК им.В.А.Кучеренко (руководитель разработки - канд. техн. наук *Н.А.Попов*, исполнители - канд. техн. наук *И.В.Лебедева*, канд. техн. наук *Л.М.Арутонян*, *Д.С.Богачев*, д-р техн. наук *И.И.Ведяков*) при участии РААСН (д-р техн. наук *В.И.Травуш*) и ФГБУ "Главная геофизическая обсерватория им.А.И.Воейкова" (д-р геогр. наук *Н.В.Кобышева*).

<u>Изменение № 5</u> выполнено авторским коллективом АО "НИЦ "Строительство" - ЦНИИСК им.В.А.Кучеренко (руководитель разработки - канд. техн. наук *И.В.Лебедева*, канд. техн. наук *Л.М.Арутюнян*, *Д.С.Богачев*) при участии РААСН (д-р техн. наук *В.И.Травуш*) и ФГБУ "Главная геофизическая обсерватория им.А.И.Воейкова" (канд. геогр. наук *М.В.Клюева*).

^{*} Четвертый абзац дополнен <u>Изменением N 2</u>. Вероятно, ошибка оригинала <u>Изменения N 2</u>. Во "Введении" уже имеется абзац соджержащий информацию о разработчиках. - Примечание изготовителя базы данных.

<u>Изменение № 6</u> выполнено авторским коллективом ФАУ "ФЦС" при участии АО "НИЦ "Строительство".

(Измененная редакция, Изм. N 1, 2, 3, 5, 6).

1 Область применения

1.1 Настоящий свод правил устанавливает требования по назначению нагрузок, воздействий и их сочетаний, учитываемых при расчетах зданий и сооружений по предельным состояниям первой и второй групп, в соответствии с положениями <u>ГОСТ 27751</u>.

Примечание - Далее по тексту, где это возможно, термин "воздействие" опущен и заменен термином "нагрузка", а слова "здания и сооружения" заменены словом "сооружения".

1.2 При проектировании следует учитывать нагрузки, возникающие при возведении и эксплуатации сооружений, а также при изготовлении, хранении и перевозке строительных конструкций.

2 Нормативные ссылки

В настоящем своде правил использованы нормативные ссылки на следующие документы:

ГОСТ 27751-2014 Надежность строительных конструкций и оснований. Основные положения

СП 14.13330.2018 "СНиП II-7-81* Строительство в сейсмических районах" (с изменениями № 2, № 3)

СП 131.13330.2020 "СНиП 23-01-99* Строительная климатология" (с изменениями № 1, № 2)

<u>СП 296.1325800.2017</u> Здания и сооружения. Особые воздействия (с <u>изменениями № 1, № 2)</u>

<u>СП 385.1325800.2018</u> Защита зданий и сооружений от прогрессирующего обрушения. Правила проектирования. Основные положения (с <u>изменениями № 1, № 2, № 3)</u>

Примечание - При пользовании настоящим сводом правил целесообразно проверить действие ссылочных документов в информационной системе общего пользования - на официальном сайте федерального органа исполнительной власти в сфере стандартизации в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего свода правил в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде стандартов.

(Измененная редакция, <u>Изм. N 2</u>, <u>3</u>, <u>5</u>).

3 Термины и определения

В настоящем своде правил применены термины по ГОСТ 27751, а также следующие термины с соответствующими определениями:

(Измененная редакция, <u>Изм. N 5</u>).

- 3.1 **воздействия:** Нагрузки, изменения температуры, влияния на строительный объект окружающей среды, действие ветра, осадка оснований, смещение опор, деградация свойств материалов во времени и другие эффекты, вызывающие изменения напряженно-деформированного состояния строительных конструкций. При проведении расчетов воздействия допускается задавать как эквивалентные нагрузки;
- 3.2 **коэффициент надежности по нагрузке:** Коэффициент, учитывающий в условиях нормальной эксплуатации сооружений возможное отклонение нагрузок в неблагоприятную (большую или меньшую) сторону от нормативных значений;
- 3.3 коэффициент сочетаний нагрузок: Коэффициент, учитывающий уменьшения вероятности одновременного достижения несколькими нагрузками их расчетных значений;
 - 3.4 нагрузки: Внешние механические силы (вес конструкций, оборудования, снегоотложений, людей и т.п.), действующие на строительные объекты;
- 3.5 нагрузки длительные: Нагрузки, изменения расчетных значений которых в течение расчетного срока службы строительного объекта пренебрежимо малы по сравнению с их средними значениями;
 - 3.6 нагрузки кратковременные: Нагрузки, длительность действия расчетных значений которых существенно меньше срока службы сооружения;
- 3.7 нормативное (базовое) значение нагрузок: Основная базовая характеристика, устанавливаемая соответствующими нормами проектирования, техническими условиями или заданием на проектирование;
- 3.8 **особые нагрузки**: Нагрузки и воздействия (например, взрыв, столкновение транспортных средств с частями сооружений, авария оборудования, пожар, землетрясение, некоторые климатические нагрузки, отказ работы несущего элемента конструкций), создающие аварийные ситуации с возможными катастрофическими последствиями;

(Измененная редакция, <u>Изм. N 1</u>).

- 3.9 расчетное значение нагрузки: Предельное (максимальное или минимальное) значение нагрузки в течение срока эксплуатации объекта;
- 3.10 расчетные сочетания нагрузок: Все возможные неблагоприятные комбинации нагрузок, которые необходимо учитывать при проектировании объекта.

4 Общие положения

4.1 Основными характеристиками нагрузок, установленных в настоящих нормах, являются их нормативные (базовые) значения.

Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (новая редакция) ИС «Кодекс: 6 поколение» Интранет

При необходимости учета длительности нагрузок, в том числе влияния реологических или нелинейных свойств материалов, при проверке на выносливость, усталостную прочность и в других случаях, оговоренных в действующих документах по стандартизации в области проектирования конструкций и оснований, устанавливаются пониженные нормативные значения нагрузок от оборудования, людей, животных и транспортных средств на перекрытия жилых и общественных зданий, зданий сельскохозяйственного назначения, от мостовых и подвесных кранов, снеговых, температурных климатических воздействий.

(Измененная редакция, <u>Изм. N 3, 5</u>).

- 4.2 Расчетное значение нагрузки следует определять как произведение ее нормативного значения на коэффициент надежности по нагрузке γ_f , соответствующий рассматриваемому предельному состоянию. Минимальные значения коэффициента надежности γ_f в основных и особых сочетаниях нагрузок определяются следующим образом:
 - а) при расчете по предельным состояниям 1-й группы в соответствии с <u>7.2, 7.3, 8.1.4, 8.2.7, 8.3.5, 8.4.5, 9.8, 10.12, разделом 11, 12.5</u> и <u>13.8;</u>
- б) при расчете по предельным состояниям 2-й группы принимаются равными единице, если в нормах проектирования конструкций и оснований не установлены другие значения;
- в) при расчете по особым предельным состояниям принимают равными единице, если в действующих документах по стандартизации в области проектирования конструкций и оснований не установлены другие значения.

(Измененная редакция, <u>Изм. N 1, 2, 5</u>).

4.3 Расчетные значения особых проектных нагрузок (экстремальных климатических, ударных, взрывных, нагрузок от пожарных автомобилей на стилобатные и подземные части зданий) устанавливают в соответствии с <u>СП 296.1325800</u> или заданием на проектирование, особых аварийных нагрузок - в соответствии с <u>СП 385.1325800</u> или заданием на проектирование, сейсмических - в соответствии с <u>СП 14.13330</u>.

(Измененная редакция, <u>Изм. N 1</u>, <u>5</u>).

- 4.4 Расчетные значения климатических нагрузок и воздействий (снеговые и гололедные нагрузки, воздействия ветра, температуры и др.) допускается назначать в установленном порядке на основе анализа соответствующих климатических данных для места строительства.
- 4.5 При расчете конструкций и оснований для условий возведения зданий и сооружений расчетные значения снеговых, ветровых, гололедных нагрузок и температурных климатических воздействий разрешается снижать на 20%.
- 4.6 Дополнительные требования по назначению нормативных и расчетных значений нагрузок, а также коэффициентов надежности по нагрузкам и коэффициентов сочетаний допускается устанавливать в нормативных документах на отдельные виды сооружений, строительных конструкций и оснований.
- 4.7 Для зданий и сооружений повышенного уровня ответственности, а также во всех случаях, не указанных в настоящем своде правил, дополнительные требования к нагрузкам и воздействиям на строительные конструкции и основания необходимо устанавливать в нормативных документах на отдельные виды

сооружений, строительных конструкций и оснований, а также в заданиях на проектирование с учетом рекомендаций, разработанных в рамках научно-технического сопровождения проектирования.

4.8 Пониженные нормативные значения равномерно распределенных кратковременных нагрузок устанавливают в соответствии с <u>8.2.3;</u> равномерно распределенных нагрузок от транспортных средств - в соответствии с <u>8.4.4;</u> крановых нагрузок - в соответствии с <u>9.19</u> и <u>9.20;</u> снеговых нагрузок - в соответствии с <u>10.11;</u> температурных климатических воздействий - в соответствии с <u>13.7</u>.

(Введен дополнительно, <u>Изм. N 5</u>).

5 Классификация нагрузок

- 5.1 В зависимости от продолжительности действия нагрузок следует различать постоянные P_d и временные (длительные P_t , кратковременные P_t , особые P_s) нагрузки.
- 5.2 Нагрузки, возникающие при изготовлении, хранении и перевозке конструкций, а также при возведении сооружений, следует учитывать в расчетах как кратковременные.

Нагрузки, возникающие на стадии эксплуатации сооружений, следует учитывать в соответствии с указаниями <u>5.3-5.6</u>.

- 5.3 К постоянным P_d нагрузкам следует относить:
- а) вес частей сооружений, в том числе несущих и ограждающих строительных конструкций;
- б) вес и давление грунтов (насыпей, засыпок), горное давление;
- в) гидростатическое давление.

Сохраняющиеся в конструкции или основании усилия от предварительного напряжения следует учитывать в расчетах как усилия от постоянных нагрузок.

- 5.4 К длительным P_l нагрузкам следует относить:
- а) вес временных перегородок, подливок и подбетонок под оборудование;
- б) вес стационарного оборудования: станков, аппаратов, моторов, емкостей, трубопроводов с арматурой, опорными частями и изоляцией, воздуховодов, кабельных коммуникаций, ленточных конвейеров, постоянных подъемных машин с их канатами и направляющими, а также вес жидкостей и твердых тел, заполняющих оборудование;
 - в) давление газов, жидкостей и сыпучих тел в емкостях и трубопроводах, избыточное давление и разрежение воздуха, возникающее при вентиляции шахт;

- г) нагрузки на перекрытия от складируемых материалов и стеллажного оборудования в складских помещениях, холодильниках, зернохранилищах, книгохранилищах, архивах и подобных помещениях;
 - д) температурные технологические воздействия от стационарного оборудования;
 - е) вес слоя воды на плоских водонаполненных покрытиях;
 - ж) вес отложений производственной пыли, если не предусмотрены соответствующие мероприятия по ее удалению;
 - и) кратковременные нагрузки с пониженным нормативным значением (см. 4.1, 4.8).
- к) воздействия, обусловленные деформациями основания, не сопровождающимися коренным изменением структуры грунта, а также оттаиванием вечномерзлых грунтов;
 - л) воздействия, обусловленные изменением влажности, усадкой и ползучестью материалов.

(Измененная редакция, <u>Изм. N 3, 5</u>).

- 5.5 К кратковременным нагрузкам P_{f} следует относить:
- а) нагрузки от оборудования, возникающие в пускоостановочном, переходном и испытательном режимах, а также при его перестановке или замене;
- б) вес людей, ремонтных материалов в зонах обслуживания и ремонта оборудования;
- в) нагрузки от людей, животных, оборудования на перекрытия жилых, общественных и сельскохозяйственных зданий, кроме нагрузок, указанных в <u>5.4, а, б, г, д</u>;
- г) нагрузки от подвижного подъемно-транспортного оборудования (погрузчиков, электрокаров, кранов-штабелеров, тельферов, а также от мостовых и подвесных кранов), включая вес транспортируемых грузов;
 - д) нагрузки от транспортных средств;
 - е) климатические (снеговые, ветровые, температурные и гололедные), указанные в разделах 10-13.

(Измененная редакция, <u>Изм. N 3</u>).

- 5.6 К особым P_s нагрузкам следует относить:
- а) сейсмические;

- б) взрывные;
- в) ударные, в том числе нагрузки от столкновений транспортных средств с частями сооружения;
- г) нагрузки, вызываемые резкими нарушениями технологического процесса, временной неисправностью или поломкой оборудования;
- д) воздействия, обусловленные деформациями основания, сопровождающимися коренным изменением структуры грунта (например, при замачивании просадочных грунтов) или оседанием его в районах горных выработок и в карстовых районах;
 - е) нагрузки, обусловленные пожаром;
 - ж) климатические (снеговые, ветровые, температурные и гололедные) нагрузки, действие которых может привести к аварийной расчетной ситуации.

Другие типы особых воздействий устанавливаются в нормах проектирования конструкций и оснований.

(Измененная редакция, <u>Изм. N 1</u>).

6 Сочетания нагрузок

6.1 Расчет конструкций и оснований по предельным состояниям 1-й и 2-й групп следует выполнять с учетом неблагоприятных сочетаний нагрузок или соответствующих им усилий.

Эти сочетания устанавливаются из анализа реальных вариантов одновременного действия различных нагрузок для рассматриваемой стадии работы конструкции или основания.

- 6.2 В зависимости от учитываемого состава нагрузок следует различать:
- а) основные сочетания нагрузок, состоящие из постоянных, длительных и кратковременных

$$C_m = P_d + (\psi_{i1}P_{i1} + \psi_{i2}P_{i2} + \psi_{i3}P_{i3} + \dots) + (\psi_{i1}P_{i1} + \psi_{i2}P_{i2} + \psi_{i3}P_{i3} + \dots); \quad (6.1)$$

б) особые сочетания нагрузок, состоящие из постоянных, длительных, кратковременных и одной из особых нагрузок.

$$C_s = C_m + P_s \,, \tag{6.2}$$

где C_m - нагрузка для основного сочетания;

 C_s - нагрузка для особого сочетания;

 Ψ_{li} (i=1, 2, 3, ...,) - коэффициенты сочетаний для длительных нагрузок;

 Ψ_{fi} (*i*=1, 2, 3, ...,) - коэффициенты сочетаний для кратковременных нагрузок.

6.3 Для основных и особых сочетаний нагрузок, за исключением случаев, оговоренных в нормах проектирования сооружений в сейсмических районах и в нормах проектирования конструкций и оснований, коэффициент сочетаний длительных нагрузок Ѱ₁ определяется следующим образом:

$$\Psi_{l1} = 1.0; \quad \Psi_{l2} = \Psi_{l3} = \dots = 0.95,$$
 (6.3)

где Ψ_{II} - коэффициент сочетаний, соответствующий основной по степени влияния длительной нагрузке;

 ψ_{l2} , ψ_{l3} - коэффициенты сочетаний для остальных длительных нагрузок.

6.4 Для основных сочетаний необходимо использовать следующие значения коэффициентов сочетаний кратковременных нагрузок

$$\psi_{t1} = 1.0; \quad \psi_{t2} = 0.9; \quad \psi_{t3} = \psi_{t4} = \dots = 0.7,$$
(6.4)

где ψ_{t1} - коэффициент сочетаний, соответствующий основной по степени влияния кратковременной нагрузке;

 ψ_{t2} - коэффициент сочетаний, соответствующий второй кратковременной нагрузке;

 Ψ_{t3} , Ψ_{t4} - коэффициенты сочетаний для остальных кратковременных нагрузок.

Для крановых нагрузок коэффициенты сочетаний устанавливаются в соответствии с 9.18.

6.5 Для особых сочетаний, определяемых формулой (6.2), необходимо использовать следующие значения коэффициентов сочетаний кратковременных нагрузок:

$$\psi_{t1} = 0.5, \quad \psi_{t2} = \psi_{t3} = \dots = 0.3,$$
(6.5)

где Ψ_{f1} - коэффициент сочетаний, соответствующий первой кратковременной нагрузке;

 ψ_{t2} , ψ_{t3} - коэффициенты сочетаний для остальных кратковременных нагрузок.

Другие значения коэффициентов сочетаний кратковременных нагрузок допускается устанавливать в нормативных документах на проектирование конструкций и оснований.

(Измененная редакция, <u>Изм. N 1</u>).

- 6.6 При учете сочетаний нагрузок в соответствии с 6.3-6.5 за одну временную нагрузку следует принимать:
- а) нагрузку одного вида от одного источника (давление или разрежение в емкости, снеговую, ветровую, гололедную нагрузки, температурные климатические воздействия, нагрузку от одного погрузчика, электрокара, мостового или подвесного крана);
- б) нагрузки от нескольких источников, принимаемые со своими расчетными значениями, если они действуют совместно (нагрузки от оборудования, людей и складируемых материалов на одно или несколько перекрытий с учетом коэффициентов $\psi_1 \psi_4$, приведенных в <u>6.7</u> и <u>6.8</u>; нагрузки от нескольких мостовых или подвесных кранов с учетом коэффициента ψ_f , приведенного в <u>9.18</u>; гололедно-ветровую нагрузку, определяемую в соответствии с <u>12.3</u>).

(Измененная редакция, Изм. N 2).

- 6.7 При расчете балок, ригелей, плит, стен, колонн и фундаментов, воспринимающих нагрузки от одного перекрытия, нормативные значения нагрузок, указанные в <u>таблице 8.3</u>, допускается снижать в зависимости от грузовой площади <u>А</u>, м², с которой передаются нагрузки на рассчитываемый элемент, умножением на коэффициент Ф₁ или Ф₂, равный:
 - а) для позиций 1, 2, 12, а (при $A > A = 9 \text{ м}^2$)
 - $\varphi_1 = 0.4 + \frac{0.6}{\sqrt{A/A_1}}; \tag{6.6}$
 - б) для позиций 4, 11, 12, б (при $A > A_2 = 36 \text{ м}^2$)

$$\varphi_2 = 0.5 + \frac{0.5}{\sqrt{A/A_2}} \,. \tag{6.7}$$

- 6.8 При определении усилий для расчета колонн, стен и фундаментов, воспринимающих нагрузки от двух перекрытий и более, полные нормативные значения нагрузок, указанные в позициях 1, 2, 4, 11, 12, а и 12, б таблицы 8.3, допускается снижать умножением на коэффициенты сочетания ψ₃ или ψ₄:
 - а) для позиций 1, 2, 12, а

 $\varphi_3 = 0.4 + \frac{\varphi_1 - 0.4}{\sqrt{n}} \,; \tag{6.8}$

б) для позиций 4, 11, 12, б

$$\varphi_4 = 0.5 + \frac{\varphi_2 - 0.5}{\sqrt{n}} \,, \tag{6.9}$$

где ϕ_1 , ϕ_2 - определяются в соответствии с <u>6.7</u>;

- и общее число перекрытий, нагрузки от которых учитываются при расчете рассматриваемого сечения колонны, стены, фундамента.
- 6.7, 6.8 (Введены дополнительно, <u>Изм. N 2</u>).

7 Вес конструкций и грунтов

- 7.1 Нормативное значение веса конструкций заводского изготовления следует определять на основании стандартов, рабочих чертежей или паспортных данных заводов-изготовителей, для других строительных конструкций и грунтов по проектным размерам и удельному весу материалов и грунтов с учетом их влажности в условиях возведения и эксплуатации сооружений.
 - 7.2 Коэффициенты надежности по нагрузке γ_f для веса строительных конструкций и грунтов приведены в <u>таблице 7.1</u>.

Таблица 7.1

Конструкции сооружений и вид грунтов	Коэффициент надежности по нагрузке $^{\gamma}\!f$
Конструкции	
Металлические, за исключением случаев, указанных в 7.3	1,05
Бетонные (со средней плотностью свыше 1600 кг/м ³), железобетонные, каменные, армокаменные, деревянные	1,1
Бетонные (со средней плотностью 1600 кг/м ³ и менее), изоляционные,	

выравнивающие и отделочные слои (плиты, материалы в рулонах, засыпки, стяжки и т.п.), выполняемые:	
в заводских условиях	1,2
на строительной площадке	1,3
Грунты	
В природном залегании	1,1
На строительной площадке	1,15

Примечание - При определении нагрузок от грунта следует учитывать нагрузки от складируемых материалов, оборудования и транспортных средств, передаваемые на грунт.

7.3 При проверке конструкций на устойчивость положения против опрокидывания, а также в других случаях, когда уменьшение веса конструкций и грунтов может ухудшить условия работы конструкций, следует произвести расчет, принимая для веса конструкции или ее части коэффициент надежности по нагрузке $\gamma_f = 0.9$, если иное значение не указано в нормах проектирования этих конструкций.

При этом следует учесть также случай пониженных значений кратковременных нагрузок.

8 Нагрузки от оборудования, людей, животных, складируемых материалов и изделий, транспортных средств

Правила настоящего раздела распространяются на нагрузки от людей, животных, оборудования, изделий, материалов, временных перегородок, транспортных средств, действующие на перекрытия, покрытия, лестницы зданий и сооружений и полы на грунтах.

Варианты загружения перекрытий этими нагрузками следует принимать в соответствии с предусмотренными условиями возведения и эксплуатации зданий, в наиболее неблагоприятном расчетном положении.

Если на стадии проектирования данные об этих условиях недостаточны, при расчете конструкций и оснований необходимо рассмотреть следующие варианты загружения отдельных перекрытий:

сплошное загружение принятой нагрузкой;

неблагоприятное частичное загружение при расчете конструкций и оснований, чувствительных к такой схеме загружения;

отсутствие временной нагрузки.

8.1 Определение нагрузок от оборудования, складируемых материалов и изделий

- 8.1.1 Нагрузки от оборудования (в том числе трубопроводов, воздуховодов, кабельных коммуникаций, транспортных средств), складируемых материалов и изделий устанавливаются в задании на проектирование на основании технологических решений, в которых должны быть приведены:
- а) возможные на каждом перекрытии и полах на грунте места расположения и габариты опор оборудования, размеры участков складирования и хранения материалов и изделий, места возможного перемещения оборудования в процессе эксплуатации или перепланировки;
- б) нормативные значения нагрузок и коэффициенты надежности по нагрузке, принимаемые в соответствии с указаниями настоящих норм, для машин с динамическими нагрузками нормативные значения инерционных сил и коэффициенты надежности по нагрузке для инерционных сил, а также другие необходимые характеристики.

Фактические нагрузки на перекрытия допускается заменять эквивалентными равномерно распределенными нагрузками, рассчитанные значения которых должны обеспечивать несущую способность и жесткость элементов конструкций и их узлов, требуемые по условиям их загружения фактическими нагрузками.

(Измененная редакция, Изм. N 5).

8.1.2 Нормативное значение веса оборудования, в том числе трубопроводов, воздуховодов, кабельных коммуникаций, следует определять на основании стандартов, а для нестандартного оборудования - на основании паспортных данных заводов-изготовителей или рабочих чертежей.

Нагрузки от веса оборудования включают в себя: собственный вес установки или машины (в том числе привода, постоянных приспособлений, опорных устройств, подливок и подбетонок), вес изоляции, заполнителей оборудования, наиболее тяжелой обрабатываемой детали, вес транспортируемого груза, соответствующий номинальной грузоподъемности, и т.п.

При этом следует предусматривать мероприятия, исключающие необходимость усиления несущих конструкций, связанного с перемещением технологического оборудования во время монтажа или эксплуатации здания.

Число учитываемых одновременно погрузчиков или электрокаров и их размещение на перекрытии при расчете различных элементов следует принимать по заданию на проектирование на основании технологических решений.

Динамическое воздействие вертикальных нагрузок от погрузчиков и электрокаров допускается учитывать путем умножения нормативных значений статических нагрузок на коэффициент динамичности, равный 1,2.

(Измененная редакция, Изм. N 5).

8.1.3 При задании нормативных значений нагрузок в складских помещениях необходимо учитывать эквивалентную равномерно распределенную нагрузку на перекрытия, покрытия и полы на грунтах, а также вертикальную и, при необходимости, горизонтальную сосредоточенные нагрузки, прикладываемые для учета возможного неблагоприятного влияния местных нагрузок и воздействий.

Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (новая редакция) ИС «Кодекс: 6 поколение» Интранет

Эти нагрузки следует определять по заданию на проектирование на основании технологических решений, с учетом удельного веса складируемых материалов и изделий, возможного их размещения по площади помещений и максимальных значений высоты складирования и принимать не менее нормативных значений, приведенных в таблице 8.1.

Таблица 8.1

Здания и помещения	Нормативные значения равномерно распределенных нагрузок P_{t} , кПа	Нормативные значения сосредоточенных нагрузок , кН
Торговые склады	Не менее 5,0	Не менее 6,0
Производственные и промышленные складские помещения	По заданию на проектирование, но не менее: 3,0 - для расчета плит и второстепенных балок; 2,0 - для расчета ригелей, колонн и фундаментов	По заданию на проектирование, но не менее 3,0
Книгохранилища; архивы	По заданию на проектирование, но не менее 5,0	Не менее 6,0

Таблица 8.1 (Измененная редакция, <u>Изм. N 1</u>).

8.1.4 Коэффициент надежности по нагрузке γ_f для веса оборудования и материалов приведен в <u>таблице 8.2</u>.

Таблица 8.2

Оборудование и материалы	Коэффициент надежности по нагрузке <i>"</i> \f
Стационарное оборудование	1,05
Изоляция стационарного оборудования	1,2

Заполнители оборудования (в том числе резервуаров и трубопроводов):	
жидкости	1,0
суспензии, шламы, сыпучие тела	1,1
Погрузчики и электрокары (с грузом)	1,2
Складируемые материалы и изделия	1,2
Книгохранилища; архивы	1,2

Таблица 8.2 (Измененная редакция, Изм. N 1).

8.2 Равномерно распределенные нагрузки

8.2.1 Нормативные значения равномерно распределенных кратковременных нагрузок на плиты перекрытий, лестницы и полы на грунтах приведены в <u>таблице</u> 8.3.

8.2.2 Нормативные значения нагрузок на ригели и плиты перекрытий от веса временных перегородок следует принимать в зависимости от их конструкции, расположения и характера опирания на перекрытия и стены. Указанные нагрузки допускается учитывать как равномерно распределенные добавочные нагрузки, принимая их нормативные значения на основании расчета для предполагаемых схем размещения перегородок, но не менее 0,5 кПа.

Таблица 8.3

N nn.	Помещения зданий и сооружений	Нормативные значения равномерно распределенных нагрузок P_{t} , кПа, не менее
1	Квартиры жилых зданий; спальные помещения детских дошкольных учреждений и школ-интернатов; жилые помещения домов отдыха и пансионатов, общежитий и гостиниц; палаты больниц и санаториев;	1,5

	террасы	
2	Служебные помещения административного, инженерно-технического, научного персонала организаций и учреждений; офисы, классные помещения учреждений просвещения; бытовые помещения (гардеробные, душевые, умывальные, уборные) промышленных предприятий и общественных зданий и сооружений	2,0
3	Кабинеты и лаборатории учреждений здравоохранения, лаборатории учреждений просвещения, науки; помещения электронно-вычислительных машин; кухни общественных зданий; помещения учреждений бытового обслуживания населения (парикмахерские, ателье и т.п.); технические этажи жилых и общественных зданий высотой менее 75 м; подвальные помещения	2,0
4	Залы:	
	а) читальные	2,0
	б) обеденные (в кафе, ресторанах, столовых и т.п.)	3,0
	в) собраний и совещаний, ожидания, зрительные и концертные, спортивные, танцевальные, фитнес-центры, бильярдные	4,0
	г) торговые, выставочные и экспозиционные	4,0
5	(Исключен, <u>Изм. N 1</u>).	
6	Сцены зрелищных предприятий	5,0
7	Трибуны:	
	а) с закрепленными сиденьями	4,0
	б) для стоящих зрителей	5,0
8	Чердачные помещения	0,7
9	Покрытия на участках:	
	а) с возможным скоплением людей (выходящих из	4,0

Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (новая редакция) ИС «Кодекс: 6 поколение» Интранет

	производственных помещений, залов, аудиторий и т.п.)	
	б) используемых для отдыха	1,5
	в) прочих	0,7
10	Балконы (лоджии) с учетом нагрузки:	
	а) полосовой равномерной на участке шириной 0,8 м вдоль ограждения балкона (лоджии)	4,0
	б) сплошной равномерной на площади балкона (лоджии), воздействие которой не благоприятнее, чем определяемое по 10, <i>а</i>	2,0
11	Участки обслуживания и ремонта оборудования в производственных помещениях	1,5
12	Вестибюли, фойе, коридоры, лестницы (с относящимися к ним проходами), примыкающие к помещениям, указанным в позициях:	
	а) 1, 2 и 3	3,0
	б) 4, 5, 6, 11 и 13	4,0
	в) 7	5,0
13	Перроны вокзалов, железнодорожные платформы и пассажирские переходы	4,0
14	Помещения для скота:	
	а) мелкого	2,0
	б) крупного	5,0
_		

Примечания

1 Нагрузки, указанные в поз.8, следует учитывать на площади, не занятой оборудованием и материалами.

Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (новая редакция) ИС «Кодекс: 6 поколение» Интранет

- 2 Нагрузки, указанные в поз.9, не следует учитывать одновременно со снеговой нагрузкой.
- 3 Нагрузки, указанные в поз.10, следует учитывать при расчете несущих конструкций балконов (лоджий) и участков стен в местах защемления этих конструкций. При расчете нижележащих участков стен, фундаментов и оснований нагрузки на балконы (лоджии) следует принимать равными нагрузкам примыкающих основных помещений зданий и снижать их с учетом 6.7 и 6.8.
- 4 Нормативные значения нагрузок для зданий и помещений, указанных в позициях 3, 4, *а*, 6, 11 и 14, следует принимать по заданию на проектирование на основании технологических решений.
- 5 При проектировании танцевальных залов, сцен театрально-зрелищных предприятий и трибун спортивных сооружений необходимо учитывать динамическое действие нагрузок с частотой, равной 2 Гц, и интенсивностью (амплитудой), равной 1,7 кПа. Значение коэффициента динамичности, а также площадь воздействия устанавливаются в нормах проектирования или задании на проектирование.

(Измененная редакция, Изм. N 1, 2, 3).

- 8.2.3 Пониженные нормативные значения равномерно распределенных кратковременных нагрузок, указанных в <u>таблице 8.3</u>, устанавливают в зависимости от рассматриваемой расчетной ситуации:
- при определении вертикальных предельных прогибов элементов конструкций на основе физиологических и эстетико-психологических требований по <u>таблице</u> <u>Д.1 приложения Д.2</u>;
 - при определении вертикальных предельных прогибов элементов конструкций, ограничиваемых исходя из технологических и конструктивных требований по таблице Л.1 приложения Л.

В других случаях пониженные нормативные значения равномерно распределенных кратковременных нагрузок устанавливают с понижающим коэффициентом, принимаемым в действующих документах по стандартизации в области проектирования строительных конструкций и оснований, но не менее 0,35.

(Измененная редакция, <u>Изм. N 1, 3, 5</u>).

- 8.2.4, 8.2.5 (Исключены, Изм. N 2).
- 8.2.6 Нормативные значения горизонтальных нагрузок на поручни перил лестниц и балконов следует принимать:
- а) для жилых зданий, дошкольных организаций, домов отдыха, санаториев, больниц и других лечебных учреждений 0,5 кН/м;
- б) для трибун и спортивных залов 1,5 кН/м;
- в) для других зданий и помещений 0,8 кН/м или по заданию на проектирование;
- г) для обслуживающих площадок, мостиков, ограждений крыш, предназначенных для непродолжительного пребывания людей, нормативное значение горизонтальной нагрузки на поручни перил следует принимать 0,3 кН/м, если по заданию на проектирование на основании технологических решений не требуется

большее значение нагрузки.

(Введен дополнительно, <u>Изм. N 2</u>).

- 8.2.7 Коэффициенты надежности по нагрузке γ_f для равномерно распределенных нагрузок, указанных в 8.2.1, следует принимать:
- 1,3 при нормативном значении менее 2,0 кПа;
- 1.2 при нормативном значении 2,0 кПа и более.

Коэффициент надежности по нагрузке от веса временных перегородок следует принимать в соответствии с <u>7.2</u>.

Для нагрузок, указанных в <u>8.2.6</u>, следует принимать коэффициент надежности по нагрузке $\gamma_f = 1,2$.

(Введен дополнительно, Изм. N 2), (Измененная редакция, Изм. N 3, 4).

8.3 Сосредоточенные нагрузки*

- * Измененная редакция, <u>Изм. N 2</u>.
- 8.3.1 Несущие элементы перекрытий, покрытий, лестниц и балконов (лоджий) должны быть проверены на сосредоточенную вертикальную нагрузку, приложенную к элементу, в неблагоприятном положении на квадратной площадке со сторонами не более 10 см.

(Измененная редакция, <u>Изм. N 3</u>).

- 8.3.2, 8.3.3 (Исключены, <u>Изм. N 2</u>).
- 8.3.4 Если в задании на проектирование на основании технологических решений не предусмотрены более высокие нормативные значения сосредоточенных нагрузок, их следует принимать:
 - а) для перекрытий и лестниц 1,5 кН;
 - б) для чердачных перекрытий, покрытий, террас и балконов 1,0 кН;
 - в) для покрытий, по которым можно передвигаться только с помощью трапов и мостиков, 0,5 кН.

Элементы, рассчитанные на возможные при возведении и эксплуатации местные нагрузки от оборудования и транспортных средств, допускается не проверять на указанную сосредоточенную нагрузку.

Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (новая редакция) ИС «Кодекс: 6 поколение» Интранет

(Измененная редакция, <u>Изм. N 3</u>).

8.3.5 Для сосредоточенных нагрузок, указанных в 8.3.4, следует принимать коэффициент надежности по нагрузке $\gamma_f = 1,2.$

(Введен дополнительно, <u>Изм. N 2</u>), (Измененная редакция, <u>Изм. N 3</u>).

8.4 Нагрузки от транспортных средств

8.4.1 Настоящий раздел регламентирует значения вертикальных строительных нагрузок на перекрытия, покрытия и полы на грунтах от колесных транспортных средств, движущихся как свободно, так и по рельсовым путям.

Расчетные значения таких нагрузок включают собственный вес транспортных средств и полезные нагрузки, определяемые их техническими параметрами в соответствии с паспортной документацией заводов-изготовителей.

В случаях, оговоренных в нормах на проектирование конструкций, необходим также учет горизонтальных нагрузок, передаваемых на элементы несущих конструкций зданий и сооружений.

Вертикальные и горизонтальные нагрузки, способы их приложения и расположение должны определяться в каждом конкретном случае заданием на проектирование.

Нормативные значения эквивалентных вертикальных равномерно распределенных и местных сосредоточенных нагрузок на перекрытия, покрытия и полы на грунтах автостоянок следует определять по <u>таблице 8.4</u>.

Таблица 8.4

N nn.	Помещения зданий и сооружений	Нормативные значения равномерно распределенных нагрузок $P_{\!\!f}$, кПа, не менее	Нормативные значения сосредоточенных нагрузок \mathcal{Q}_{t} , кH, не менее
1	Автостоянки в зданиях для автомашин общим весом до 3 тс включительно:		
	а) площади парковки	3,5	20,0
	б) пандусы и подъездные пути	5,0	25,0

2	Автостоянки в зданиях для автомашин общим весом от 3 до 16 тс:				
	а) площади парковки	5,0	90,0		
	б) пандусы и подъездные пути	7,0	100,0		
3	Автостоянки для автомашин общим весом свыше 16 тс	По заданию на проектирование			

Примечания

- 1 Общий вес совокупность собственного веса автомобиля и максимальной полезной нагрузки.
- 2 Нормативные значения нагрузок для зданий и помещений, указанных в 2, *а*, *б,* следует принимать по заданию на проектирование на основании технологических решений.
- 3 Если внутригаражные проезды доступны для проезда автотранспорта, не размещаемого на автостоянке, то их следует относить к подъездным путям.
- 8.4.2 При расчете плит перекрытий на продавливание и в других случаях учета местных воздействий следует учитывать сосредоточенные нагрузки величиной $0.5 Q_t$, приложенные на две квадратные площадки стороной 100 мм для позиций 1,a и 1,b таблицы 8.4 и 200 мм для позиций 2,a и 2,b, расположенные на расстоянии 1,8 м друг от друга, в наиболее неблагоприятном возможном положении. Указанные нагрузки не следует рассматривать одновременно с равномерно распределенной нагрузкой P_t .
- 8.4.3 Расчетные значения нагрузок, указанные в <u>таблице 8.4</u>, допускается уточнять в соответствии с техническими данными автотранспортных средств, с учетом заданной схемы их размещения и коэффициента динамичности, принимаемого не менее 1,4.

(Измененная редакция, Изм. N 2).

8.4.4 Пониженные нормативные значения равномерно распределенных нагрузок от транспортных средств устанавливают с понижающим коэффициентом, принимаемым в действующих документах по стандартизации в области проектирования или в задании на проектирование в зависимости от рассматриваемой расчетной ситуации, но не менее 0,35.

(Измененная редакция, <u>Изм. N 3, 5</u>).

8.4.5 Для нагрузок, указанных в <u>8.4.1</u>, следует принимать коэффициент надежности по нагрузке $\gamma_f = 1,2$.

9 Нагрузки от мостовых и подвесных кранов

- 9.1 Нагрузки от мостовых и подвесных кранов следует определять в зависимости от групп режимов их работы, устанавливаемых в <u>таблице А.1 приложения А</u> и других нормативных документах, от вида привода и способа подвеса груза.
- 9.2 Нормативные значения вертикальных нагрузок, передаваемых колесами кранов на балки кранового пути, и другие необходимые для расчета данные следует принимать в соответствии с требованиями государственных стандартов на краны, а для нестандартных кранов в соответствии с данными, указанными в паспортах заводов-изготовителей.

Примечание - Под крановым путем понимаются обе балки, несущие один мостовой кран, и все балки, несущие один подвесной кран (две балки - при однопролетном, три - при двухпролетном подвесном кране и т.п.).

9.3 Нормативное значение горизонтальной нагрузки, направленной вдоль кранового пути и вызываемой торможением моста крана, следует принимать равным 0,1 полного нормативного значения вертикальной нагрузки на тормозные колеса рассматриваемой стороны крана.

При отсутствии данных допускается принимать, что половина колес крана являются тормозными.

- 9.4 Нормативное значение горизонтальной нагрузки, направленной поперек кранового пути и вызываемой торможением электрической тележки, следует принимать равным:
 - для кранов с гибким подвесом груза 0,05 суммы подъемной силы крана и веса тележки;
 - для кранов с жестким подвесом груза 0,1 суммы подъемной силы крана и веса тележки.

Эту нагрузку следует учитывать при расчете поперечных рам зданий и балок крановых путей. При этом принимается, что нагрузка передается на одну сторону (балку) кранового пути, распределяется поровну между всеми опирающимися на нее колесами крана и может быть направлена как внутрь, так и наружу рассматриваемого пролета.

9.5 Нормативное значение горизонтальной нагрузки, направленной поперек кранового пути и вызываемой перекосами мостовых кранов и непараллельностью крановых путей (боковой силой), для каждого ходового колеса крана следует принимать равным 0,2 полного нормативного значения вертикальной нагрузки на колесо.

Эту нагрузку необходимо учитывать только при расчете прочности и устойчивости балок крановых путей и их креплений к колоннам в зданиях с кранами групп режимов работы 7К, 8К. При этом принимается, что нагрузка передается на балку кранового пути от всех колес одной стороны крана и может быть направлена как внутрь, так и наружу рассматриваемого пролета здания. Нагрузку, указанную в <u>9.4</u>, не следует учитывать совместно с боковой силой.

- 9.6 Горизонтальные нагрузки от торможения моста и тележки крана и боковые силы считаются приложенными в месте контакта ходовых колес крана с рельсом.
- 9.7 Нормативное значение горизонтальной нагрузки, направленной вдоль кранового пути и вызываемой ударом крана о тупиковый упор, следует определять в соответствии с указаниями, приведенными в <u>А.2 приложения А.</u> Эту нагрузку необходимо учитывать только при расчете упоров и их креплений к балкам кранового пути.
- 9.8 Коэффициент надежности по нагрузке для крановых нагрузок, в том числе при проверке местной устойчивости стенок балок, следует принимать равным

γ_f =1,2 для всех режимов работы.

- 9.9 При учете местного и динамического действия сосредоточенной вертикальной нагрузки от одного колеса крана полное нормативное значение этой нагрузки следует умножать при расчете прочности балок крановых путей на дополнительный коэффициент, равный:
 - 1,8 для группы режима работы кранов 8К с жестким подвесом груза;
 - 1,7 для группы режима работы кранов 8К с гибким подвесом груза;
 - 1,6 для группы режима работы кранов 7К;
 - 1,4 для группы режима работы кранов 6К;
 - 1,2 для остальных групп режимов работы кранов.
- 9.10 При расчете прочности и устойчивости балок кранового пути и их креплений к несущим конструкциям нормативные значения вертикальных крановых нагрузок следует умножать на коэффициент динамичности, равный 1,2 независимо от шага колонн.

При расчете конструкций на выносливость, проверке прогибов балок крановых путей и смещений колонн, а также при учете местного действия сосредоточенной вертикальной нагрузки от одного колеса крана коэффициент динамичности учитывать не следует.

(Измененная редакция, Изм. N 3).

- 9.11 Вертикальные нагрузки при расчете прочности и устойчивости балок крановых путей следует учитывать не более чем от двух наиболее неблагоприятных по воздействию мостовых или подвесных кранов.
- 9.12 Вертикальные нагрузки при расчете прочности и устойчивости рам, колонн, фундаментов, а также оснований в зданиях с мостовыми кранами в нескольких пролетах (в каждом пролете на одном ярусе) следует принимать на каждом пути не более чем от двух наиболее неблагоприятных по воздействию кранов, а при учете совмещения в одном створе кранов разных пролетов не более чем от четырех наиболее неблагоприятных по воздействию кранов.
- 9.13 Вертикальные нагрузки при расчете прочности и устойчивости рам, колонн, стропильных и подстропильных конструкций, фундаментов, а также оснований зданий с подвесными кранами на одном или нескольких путях следует принимать на каждом пути не более чем от двух наиболее неблагоприятных по воздействию кранов. При учете совмещения в одном створе подвесных кранов, работающих на разных путях, вертикальные нагрузки следует принимать:

не более чем от двух кранов:

- для колонн, подстропильных конструкций, фундаментов и оснований крайнего ряда при двух крановых путях в пролете;
- не более чем от четырех кранов:

- для колонн, подстропильных конструкций, фундаментов и оснований среднего ряда;
- для колонн, подстропильных конструкций, фундаментов и оснований крайнего ряда при трех крановых путях в пролете;
- для стропильных конструкций при двух или трех крановых путях в пролете.
- 9.14 Горизонтальные нагрузки при расчете прочности и устойчивости балок крановых путей, колонн, рам, стропильных и подстропильных конструкций, фундаментов, а также оснований следует учитывать не более чем от двух наиболее неблагоприятных по воздействию кранов, расположенных на одном крановом пути или на разных путях в одном створе. При этом для каждого крана необходимо учитывать только одну горизонтальную нагрузку (поперечную или продольную).
- 9.15 Число кранов, учитываемое в расчетах прочности и устойчивости при определении вертикальных и горизонтальных нагрузок от мостовых кранов на двух или трех ярусах в пролете, при одновременном размещении в пролете как подвесных, так и мостовых кранов, а также при эксплуатации подвесных кранов, предназначенных для передачи груза с одного крана на другой с помощью перекидных мостиков, следует принимать по заданию на проектирование на основании технологических решений.
- 9.16 При определении вертикальных и горизонтальных прогибов балок крановых путей, а также горизонтальных смещений колонн нагрузку следует учитывать от одного наиболее неблагоприятного по воздействию крана.
- 9.17 При наличии на крановом пути одного крана и при условии, что второй кран не будет установлен во время эксплуатации сооружения, нагрузки на этом пути должны быть учтены только от одного крана.
 - 9.18 При учете двух кранов нагрузки от них необходимо умножать на коэффициент сочетаний:

 Ψ_t =0,85 - для групп режимов работы кранов 1К-6К;

 $\Psi_f = 0.95$ - для групп режимов работы кранов 7К, 8К.

При учете четырех кранов нагрузки от них необходимо умножать на коэффициент сочетаний:

 Ψ_t = 0,7 - для групп режимов работы кранов 1К-6К;

 Ψ_{f} =0,8 - для групп режимов работы кранов 7К, 8К.

При учете одного крана вертикальные и горизонтальные нагрузки от него необходимо принимать без снижения.

9.19 При расчете на выносливость балок крановых путей под электрические мостовые краны и креплений этих балок к несущим конструкциям пониженные нормативные значения крановых нагрузок определяются умножением нормативного значения вертикальной нагрузки от одного крана (см. <u>9.2</u>) в каждом пролете здания на коэффициент: 0,4 - для групп режимов работы кранов 1К-3К; 0,5 - для групп режимов работы кранов 4К-6К; 0,6 - для группы режима работы кранов 7К; 0,7 -

для группы режима работы кранов 8К.

(Измененная редакция, <u>Изм. N 3, 5</u>).

9.20 Для проверки выносливости стенок балок в зоне действия сосредоточенной вертикальной нагрузки от одного колеса крана значения вертикального усилия от колеса, принимаемые с учетом <u>9.19</u>, следует умножать на коэффициент, учитываемый при расчете прочности балок крановых путей в соответствии с <u>9.9</u>.

Группы режимов работы кранов, при которых следует проводить расчет на выносливость, устанавливаются нормами на проектирование конструкций.

(Измененная редакция, Изм. N 3).

10 Снеговые нагрузки

10.1 Нормативное значение снеговой нагрузки на горизонтальную проекцию покрытия следует определять по формуле

$$S_0 = c_{\varrho} c_t \, \mu S_{\varrho} \,, \tag{10.1}$$

где c_g - коэффициент, учитывающий снос снега с покрытий зданий под действием ветра или иных факторов, принимаемый в соответствии с 10.5-10.9;

 c_{f} - термический коэффициент, принимаемый в соответствии с 10.10;

µ- коэффициент формы, учитывающий переход от веса снегового покрова земли к снеговой нагрузке на покрытие, принимаемый в соответствии с 10.4;

 $S_{\rm g}$ - нормативное значение веса снегового покрова на 1 м 2 горизонтальной поверхности земли, принимаемое в соответствии с <u>10.2</u>.

(Измененная редакция, Изм. N 2).

10.2 Нормативное значение веса снегового покрова S_g на 1 м 2 горизонтальной поверхности земли для отдельных населенных пунктов Российской Федерации принимают в соответствии с приложением K.

Для остальной территории Российской Федерации нормативное значение веса снегового покрова S_g на 1 м 2 горизонтальной поверхности земли следует принимать в зависимости от снегового района по данным <u>таблицы 10.1</u>.

Таблица 10.1

Снеговые районы	I	П	III	IV	V	VI	VII	VIII
(принимаются по <u>карте 1 приложения Е</u>)								

$S_{ m g}$, кН/м 2	0,5	1,0	1,5	2,0	2,5	3,0	3,5	4,0

Значения S_g допускается уточнять в установленном порядке на основе данных организаций по гидрометеорологии для места строительства. В этом случае значение S_g следует вычислять по формуле $S_g = S_{g,50} / 1,4$, где $S_{g,50}$ - превышаемый в среднем один раз в 50 лет ежегодный максимум веса снегового покрова, определяемый на основе данных многолетних маршрутных снегосъемок о запасах воды в снеговом покрове на защищенных от прямого воздействия ветра участках местности.

Нормативное значение веса снегового покрова необходимо определять по формуле, приведенной в примечании 1 к <u>карте 1 приложения E</u>, с учетом высотного коэффициента, принимаемого по <u>таблице E.1</u>, или устанавливать на основе данных организаций по гидрометеорологии в следующих случаях:

- для пунктов, расположенных в горных и малоизученных районах, обозначенных на карте 1 приложения Е;
- в местах со сложным изменением рельефа и высотой над уровнем моря более 500 м.

(Измененная редакция, Изм. N 2, 5).

- 10.3 В расчетах необходимо рассматривать схемы равномерно распределенных и неравномерно распределенных снеговых нагрузок на покрытия в их наиболее неблагоприятных расчетных сочетаниях.
 - 10.4 Схемы распределения снеговой нагрузки и значения коэффициента формы Ддля покрытий следует принимать в соответствии с приложением Б.

Для зданий и сооружений, имеющих габаритные размеры покрытия, превышающие 100 м в обоих направлениях, за исключением покрытий, указанных на схемах Б.1 и Б.5 приложения Б, а также во всех случаях, не предусмотренных приложением Б (при иных формах покрытий, при необходимости учета различных направлений переноса снега по покрытию, близко расположенных зданий и сооружений окружающей застройки и т.п.), схемы распределения снеговой нагрузки по покрытиям и значения коэффициента µ устанавливают на основе опыта нормирования снеговых нагрузок, результатов модельных испытаний в аэродинамических трубах (см. приложения Ж и И) с учетом 4.7 или имеющихся данных, с учетом оценки объемов снегопереноса и снегонакопления.

Значения коэффициента формы µнеобходимо устанавливать с учетом наиболее неблагоприятных направлений снегопереноса, средней температуры воздуха в зимний период, влажности, закономерностей изменения плотности и структуры снегоотложений во времени для места строительства.

В тех случаях, когда более неблагоприятные условия работы элементов конструкций возникают при частичном загружении покрытия, следует рассматривать дополнительные схемы приложения снеговых нагрузок:

- на одном скате двускатных покрытий и половине площади (вдоль пролета) сводчатых покрытий, указанных в <u>Б.1</u>, <u>Б.2 приложения Б</u>, имеющих наибольший уклон более 20°;
 - на одном скате в каждом пролете либо на двух смежных скатах через пролет двух- и многопролетных зданий с двускатными покрытиями (<u>Б.5 приложения Б</u>)

при уклоне ската более 20°;

- на половине площади двух смежных сводов через пролет многопролетных сводчатых покрытий (<u>Б.6 приложения Б</u>) при наибольшем уклоне поверхности свода более 20°;
 - в секторе, равном половине или четверти площади покрытий, указанных в Б.10-Б.12 приложения Б, имеющих наибольший уклон более 20°;
 - для покрытий с фонарями (<u>Б.3 приложения Б</u>) на одном из участков шириной *b*.

Примечания

- 1 В необходимых случаях снеговые нагрузки следует определять с учетом предусмотренного дальнейшего расширения здания.
- 2 В <u>приложении Б</u> следует учитывать нормативное значение снеговой нагрузки $S_0 = S_g$.
- 3 При расчетах конструкций допускается применение упрощенных схем снеговых нагрузок, эквивалентных по воздействию схемам нагрузок, приведенным в приложении Б.
- 4 При расчете прогонов покрытий на снеговую равномерно распределенную нагрузку следует учесть локальную неравномерность снегоотложений введением дополнительного коэффициента µ = 1,1.
- 5 При эксплуатации существующих зданий, запроектированных на более низкие расчетные значения снеговой нагрузки, чем установлено действующим сводом правил, до проведения реконструкции зданий необходимо предусмотреть мероприятия по очистке кровли от снега.

(Измененная редакция, <u>Изм. N 2, 3, 5</u>).

- 10.5 Коэффициент \mathcal{C}_{g} , учитывающий снос снега с покрытий зданий под действием ветра или иных факторов, устанавливается в зависимости от типа местности (см. <u>11.1.6</u>), формы покрытия и степени его защищенности от прямого воздействия ветра согласно <u>10.6</u>-<u>10.9</u>.
- 10.6 Для покрытий зданий, защищенных от прямого воздействия ветра, в том числе: соседними более высокими зданиями, удаленными менее чем на 10^{k_1} , где k_1 разность высот соседнего и проектируемого зданий; сплошными элементами конструкций, возвышающимися над покрытием с двух и более сторон; более высоким лесным массивом; для покрытий, расположенных ниже окружающей местности, проектируемых на местности типа C (см. $\underline{11.1.6}$), а также во всех случаях, не предусмотренных в $\underline{10.7}$ и $\underline{10.8}$, следует принимать \mathcal{C}_{g} =1,0.
- 10.7 Для пологих (с уклонами до 10° или с $f/l \le 0.05$, где f стрела подъема покрытия, м; l пролет покрытия, м) покрытий однопролетных и многопролетных зданий без фонарей, проектируемых на местности типов A или B (см. $\underline{11.1.6}$) и имеющих характерный размер в плане l_c не более 100 м (см. $\underline{\text{схемы Б.1}}$, $\underline{\text{Б.2}}$, $\underline{\text{Б.5}}$ и $\underline{\text{Б.6}}$ $\underline{\text{приложения Б}}$), а также для покрытий высотных зданий допускается учитывать коэффициент сноса снега, принимаемый по формуле (10.2), но не менее 0,5 и не

Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (новая редакция) ИС «Кодекс: 6 поколение» Интранет

более 1,0:

$$c_e = (k_v - 0.4\sqrt{k})(0.8 + 0.002l_c),$$
 (10.2)

где k_{v} - коэффициент, зависящий от средней скорости ветра в зимний период и среднемесячной температуры воздуха в январе, принимаемый по <u>таблице 10.2;</u> k- коэффициент, зависящий от высоты над уровнем планировочной отметки земли, принимаемый по <u>таблице 11.2</u> для типов местности А или В (см. <u>11.1.6</u>);

$$l_c = 2b - rac{b^2}{l_{
m max}}$$
 - характерный размер покрытия, принимаемый не более 100 м;

здесь b - наименьший размер покрытия в плане;

 $l_{
m max}$ - наибольший размер покрытия в плане.

Таблица 10.2 - Коэффициент k_{v}

Среднемесячная температура воздуха в январе <i>T</i> , °C (по <u>таблице</u> 5.1 СП 131.13330.2020)	Средняя скорость ветра ν , м/с, за период со средней суточной температурой воздуха $\leq 8^{\circ}$ С (по <u>таблице 3.1 СП 131.13330.2020</u>) для типов местности					
	3<	<i>v</i> ≤ 4	4 < v ≤ 6		<i>v</i> >6	
	Α	В	А	В	Α	В
-15≤ <i>T</i> <-5	1,4	1,4	1,3	1,4	1,3	1,3
-25 ≤ <i>T</i> <-15	1,4	1,4	1,3	1,4	1,2	1,3

T<-25 1,3 1,4 1,2 1,3 1,2 1,2

Примечания

- 1 Среднемесячная температура воздуха в январе и средняя скорость ветра принимаются для ближайшего населенного пункта к месту строительства.
- 2 Тип местности может отличаться при различных направлениях снегопереноса. В случае если местность типа А распространяется на расстояние менее 300 м от объекта, а далее расположены здания или сооружения, лесной массив или иные препятствия, характерные для местности типа В, данное направление следует относить к местности типа В.

(Измененная редакция, <u>Изм. N 2, 3, 5</u>).

10.8 Для купольных сферических и конических покрытий зданий на круглом плане, регламентируемых <u>схемами Б.13</u>, <u>Б.14 приложения Б</u>, при задании равномерно распределенной снеговой нагрузки значения коэффициента сестем станавливать в зависимости от диаметра d основания купола:

$$c_e$$
=0,85 при а≤60 м;

$$C_g$$
=1,0 при d >100 м; (10.3)

 $C_g = 0.85 + 0.00375(d-60)$ - в промежуточных случаях.

- 10.9 Снижение снеговой нагрузки, предусматриваемое 10.7, 10.8, не распространяется:
- а) на покрытия зданий в районах со среднемесячной температурой воздуха в январе выше минус 5°С (см. таблицу 5.1 СП 131.13330);
- б) на участки покрытий длиной $b,\ b_1$ и b_2 , у перепадов высот зданий и парапетов (см. схемы Б.8-Б.11 приложения Б).
- 10.10 Термический коэффициент c_t следует применять для учета снижения снеговых нагрузок на покрытия с высоким коэффициентом теплопередачи (>1 Вт/(м 2 °C) вследствие таяния, вызванного потерей тепла.

При определении снеговых нагрузок для неутепленных покрытий зданий с повышенными тепловыделениями, приводящими к таянию снега, при уклонах кровли свыше 3% и обеспечении надлежащего отвода талой воды следует вводить термический коэффициент $c_f = 0.8$. В остальных случаях $c_f = 1.0$.

Примечание - Значения коэффициента c_t допускается устанавливать в специальных рекомендациях с учетом термоизоляционных свойств материалов и

формы конструктивных элементов.

10.11 Для районов со средней температурой января минус 5°C и ниже (по таблице 5.1 $\underline{C\Pi}$ 131.13330.2020) пониженное нормативное значение снеговой нагрузки устанавливают в зависимости от рассматриваемой расчетной ситуации, но не ниже 0,5 от ее полного нормативного значения. При этом коэффициенты c_e и c_t принимают равными единице.

Для районов со средней температурой января выше минус 5°C пониженное значение снеговой нагрузки не учитывают.

Примечание - Положения настоящего пункта распространяются на все случаи применения пониженных нормативных значений снеговой нагрузки, в том числе приведенных втаблице Д.1 приложения Д.2, таблице Л.1 приложения Л.

(Измененная редакция, Изм. N 2, 3, 5).

- 10.12 Коэффициент надежности по нагрузке γ_f для снеговой нагрузки следует принимать равным 1,4.
- 10.13 Нормативное значение горизонтальной нагрузки T, кН/м, от сползания снега, действующей на выступающие над кровлей парапеты, элементы ограждающих конструкций, фасадных систем и снегозадерживающие устройства, устанавливается в зависимости от уклона α покрытия по формуле

$$T = k_t \cdot S_0 \cdot (\sin \alpha - v \cdot \cos \alpha) \cdot L, \qquad (10.4)$$

где k_t - коэффициент, учитывающий таяние снега, принимаемый равным 0,9;

 S_0 - нормативное значение снеговой нагрузки на покрытие, кН/м 2 , принимаемое согласно 10.1;

α - уклон поверхности покрытия в месте приложения нагрузки, градусы, принимаемый не менее 12°;

у - коэффициент трения снега по материалу покрытия, принимаемый по таблице 10.3;

L - длина зоны сползания снега или расстояние между снегозадерживающими преградами (в проекции на горизонтальную поверхность), м.

Таблица 10.3 - Коэффициент трения у снега по материалу

Материал поверхности покрытия	Коэффициент трения V	Материал поверхности покрытия	Коэффициент трения V
Сталь листовая	0,02	Дерево, сухой снег	0,035

Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (новая редакция) ИС «Кодекс: 6 поколение» Интранет

Сталь, фальцевая кровля	0,03	Дерево, влажный снег	0,1
Алюминий	0,04	Лед	0,028
Стекло	0,012	Металлочерепица	0,1
Полимерное покрытие из поливинилхлорида	0,014	Керамическая черепица	0,2

Примечание - Для других материалов покрытия коэффициент трения принимают на основе опубликованных данных.

Коэффициент надежности по нагрузке следует принимать согласно 10.12.

(Введен дополнительно, <u>Изм. N 2</u>), (Измененная редакция, <u>Изм. N 3</u>).

10.14 Экстремальные значения снеговой нагрузки необходимо учитывать в соответствии с <u>СП 296.1325800.2017</u> (таблица А.1 приложения А) в особых сочетаниях для населенных пунктов или в задании на проектирование.

(Введен дополнительно, <u>Изм. N 5</u>).

11 Воздействия ветра

Для зданий и сооружений необходимо учитывать следующие воздействия ветра:

- а) основной тип ветровой нагрузки (в дальнейшем "основная ветровая нагрузка", см. раздел 11.1.);
- б) пиковые значения ветровой нагрузки, действующие на конструктивные элементы ограждения и элементы их крепления (в дальнейшем "пиковая ветровая нагрузка", см. раздел 11.2);
 - в) резонансное вихревое возбуждение (см. раздел 11.3 и приложение В.2.);
 - г) аэродинамически неустойчивые колебания типа галопирования, дивергенции и флаттера.

Основной тип ветровой нагрузки и пиковые ветровые нагрузки связаны с непосредственным действием на здания и сооружения максимальных для места строительства ураганных ветров и должны учитываться при проектировании всех сооружений.

Резонансное вихревое возбуждение и аэродинамические неустойчивые колебания необходимо учитывать для зданий, сплошностенчатых сооружений или их отдельных участков, имеющих прямолинейную (или близкую к прямолинейной) центральную ось, а также неизменяющиеся или плавно изменяющиеся формы и размеры поперечного сечения, для которых $\lambda_g > 20$, где λ_g определено в <u>В.1.15</u>. Критерии возможности возбуждения аэродинамически неустойчивых колебаний устанавливаются в нормах проектирования. При проектировании сооружений должны использоваться такие архитектурные и конструктивные решения, которые исключают возбуждение аэродинамически неустойчивых колебаний.

При разработке архитектурно-планировочных решений городских кварталов, а также при планировании возведения зданий внутри существующих городских кварталов необходимо провести оценку комфортности пешеходных зон.

(Измененная редакция, <u>Изм. N 1, 5</u>).

11.1 Основная ветровая нагрузка

- 11.1.1 Нормативное значение основной ветровой нагрузки *w* следует задавать в одном из двух вариантов. В первом случае нагрузка *w* представляет собой совокупность:
 - а) нормального давления \mathcal{W}_a , приложенного к внешней поверхности сооружения или элемента;
- б) сил трения W_f , направленных по касательной к внешней поверхности и отнесенных к площади ее горизонтальной (для шедовых или волнистых покрытий, покрытий с фонарями) или вертикальной проекции (для стен с лоджиями и подобных конструкций);
- в) нормального давления w_i , приложенного к внутренним поверхностям сооружений с проницаемыми ограждениями, открывающимися или постоянно открытыми проемами.

Во втором случае нагрузка w рассматривается как совокупность:

- а) проекций \mathcal{W}_{x} и \mathcal{W}_{y} , внешних сил, обусловленных общим сопротивлением сооружения в направлении осей x и y;
- б) крутящего момента $\,w_{Mz}\,$ относительно оси z.

Примечание - Для линейных конструктивных элементов (проводов, тросов и т.п.), покрытых гололедом, их диаметр необходимо принимать с учетом толщины стенки гололеда (см. раздел 12).

(Измененная редакция, Изм. N 3).

11.1.2 Во всех случаях нормативное значение основной ветровой нагрузки w следует определять как сумму средней w_m и пульсационной w_g составляющих

$$w = w_m + w_g. (11.1)$$

При определении внутреннего давления w_i пульсационную составляющую ветровой нагрузки допускается не учитывать.

(Измененная редакция, <u>Изм. N 2</u>).

11.1.3 Нормативное значение средней составляющей основной ветровой нагрузки w_m в зависимости от эквивалентной высоты $z_{\mathfrak{g}}$ над поверхностью земли следует определять по формуле

$$w_m = w_0 k(z_e) c , \qquad (11.2)$$

где \mathcal{W}_{Π} - нормативное значение ветрового давления (см. 11.1.4);

 $k(z_s)$ - коэффициент, учитывающий изменение ветрового давления для высоты z_s (см. 11.1.5 и 11.1.6);

- с аэродинамический коэффициент (см. 11.1.7).
- 11.1.4 Нормативное значение ветрового давления w_0 принимается в зависимости от ветрового района по <u>таблице 11.1</u>. Нормативное значение ветрового давления допускается уточнять в установленном порядке на основе данных метеостанций (см. <u>4.4</u>). В этом случае w_0 , Па, следует определять по формуле

$$w_0 = 0.43v_{50}^2, (11.3)$$

где v_{50} - скорость ветра, м/с, на уровне 10 м над поверхностью земли для местности типа A (<u>11.1.6</u>), определяемая с 10-минутным интервалом осреднения и с периодом повторяемости 50 лет, т.е. превышаемая в среднем один раз в 50 лет. Таблица 11.1

Ветровые районы (принимаются по карте 2 приложения E)	la	I	=	III	IV	V	VI	VII
ᠨᡟᠾ, кПа	0,17	0,23	0,30	0,38	0,48	0,60	0,73	0,85

- 11.1.5 Эквивалентная высота $z_{\rm g}$ определяется следующим образом.
- 1 Для башенных сооружений, мачт, труб, решетчатых конструкций и т.п. сооружений $Z_g = z$.

2 Для зданий:

a) при
$$h \leq d \rightarrow z_e = h$$
;

б) при $d < h \le 2d$:

для
$$z \ge h - d \rightarrow z_a = h$$
;

для
$$0 < z < h - d \rightarrow z_o = d$$
;

в) при h > 2d:

для
$$z \ge h - d \rightarrow z_a = h$$
;

для
$$d < z < h - d \rightarrow z_e = z$$
;

для
$$0 < z \le d \rightarrow z_e = d$$
.

Здесь z - высота от поверхности земли;

d - размер здания (без учета его стилобатной части) в направлении, перпендикулярном расчетному направлению ветра (поперечный размер);

h - высота здания от поверхности земли.

(Измененная редакция, <u>Изм. N 5</u>).

11.1.6 Коэффициент $k(z_g)$ для высот $z_g \le 300$ м определяется по <u>таблице 11.2</u> или по формуле (11.4), в которых принимаются следующие типы местности:

А - открытые побережья морей, озер и водохранилищ, сельские местности, в том числе с постройками высотой менее 10 м, пустыни, степи, лесостепи, тундра;

В - городские территории, лесные массивы и другие местности, равномерно покрытые препятствиями высотой более 10 м;

С - городские районы с плотной застройкой зданиями высотой более 25 м.

Сооружение считается расположенным в местности данного типа, если эта местность сохраняется с наветренной стороны сооружения на расстоянии 30h - при высоте сооружения h<60 м и на расстоянии 2 км - при h>60 м.

Примечания

- 1 Для высот $z_{\it g}$ >300 м коэффициент $k(z_{\it g})$, а также коэффициент $\zeta(z_{\it g})$ пульсации давления ветра (см. 11.1.8) определяются в рекомендациях, разработанных в рамках научно-технического сопровождения.
 - 2 Типы местности могут быть различными для разных расчетных направлений ветра.
- 3 Для высот $z_e \le$ 10 м коэффициент $k(z_e)$, а также коэффициент $\zeta(z_e)$ пульсации давления ветра (см. 11.1.8) определяются по таблицам 11.2 и 11.4 соответственно. Промежуточные значения определяются линейной интерполяцией.

Таблица 11.2

Высота <i>Z_g</i> , м	Коэффициент k для типов местности				
	A	В	С		
<u>≤</u> 5	0,75	0,5	0,4		
10	1,0	0,65	0,4		
20	1,25	0,85	0,55		
40	1,5	1,1	0,8		
60	1,7	1,3	1,0		
80	1,85	1,45	1,15		
100	2,0	1,6	1,25		
150	2,25	1,9	1,55		
200	2,45	2,1	1,8		
250	2,65	2,3	2,0		

300	2,75	2,5	2,2
	•	,	,

$$k(z_e) = k_{10}(z_e/10)^{2\alpha}$$
 при $10 \le z_e \le 300$ м. (11.4)

Примечание - Для высот z_e <10 м коэффициент $k(z_e)$ определяется по таблице 11.2.

Значения параметров k_{10} и α для различных типов местностей приведены в <u>таблице 11.3</u>.

Таблица 11.3

Параметр	Тип местности				
	А	В	С		
α	0,15	0,2	0,25		
k ₁₀	1,0	0,65	0,4		
ζ ₁₀	0,76	1,06	1,78		

(Измененная редакция, <u>Изм. N 2, 5</u>).

11.1.7 При определении компонентов ветровой нагрузки w_{g} , w_{f} , w_{i} , w_{x} , w_{y} и w_{M2} следует использовать соответствующие значения аэродинамических коэффициентов: внешнего давления c_{g} , трения c_{f} , внутреннего давления c_{i} и лобового сопротивления c_{x} , поперечной силы c_{y} , крутящего момента c_{M2} , принимаемых по приложению В.1, где стрелками показано направление ветра. Знак "плюс" у коэффициентов c_{g} или c_{i} соответствует направлению давления ветра на соответствующую поверхность (активное давление), знак "минус" - от поверхности (отсос). Промежуточные значения нагрузок следует определять линейной интерполяцией.

При определении ветровой нагрузки на поверхности внутренних стен и перегородок при отсутствии наружного ограждения (на стадии монтажа) следует использовать аэродинамические коэффициенты внешнего давления c_g или лобового сопротивления c_χ .

Для сооружений повышенного уровня ответственности, которые указаны в [1, статья 48.1, часть 2, перечисления 1-3] или в примечании 2, а также во всех

случаях, не предусмотренных <u>В.1</u> (иные формы сооружений, учет других направлений ветрового потока или учет составляющих общего сопротивления тела по другим направлениям, необходимость учета влияния близстоящих зданий и сооружений, рельефа местности и т.п.), аэродинамические коэффициенты устанавливают на основе результатов модельных испытаний сооружений в аэродинамических трубах (см. <u>приложения Ж</u> и <u>И</u>) или на основе опыта нормирования воздействия ветра с учетом имеющихся данных в рамках проведения научного сопровождения архитектурно-строительного проектирования.

Примечания

- 1 При назначении коэффициентов c_x , c_y и c_z необходимо указать размеры сооружения, к которым они отнесены.
- 2 Для градирен, наружных кабельных эстакад, эстакад под технологические трубопроводы, наружных этажерок с оборудованием или с защитными экранами, козырьков с вылетом более 7 м, групп сооружений с круговой цилиндрической поверхностью, расстояние между которыми менее 3d, а также горизонтальных цилиндрических сооружений, расположенных вблизи плоской поверхности на высоте менее 1,5d, аэродинамические коэффициенты необходимо устанавливать в специальных рекомендациях (здесь d максимальный диаметр цилиндрических сооружений).
- 3 Значения аэродинамических коэффициентов, указанных в <u>В.1 приложения В,</u> допускается уточнять на основе данных модельных аэродинамических испытаний сооружений.
- 4 Для зданий и сплошностенчатых сооружений аэродинамические коэффициенты полного давления c_p определяются как алгебраическая сумма коэффициентов внешнего c_i и внутреннего c_i давлений.

(Измененная редакция, <u>Изм. N 1, 2, 3, 5, 6</u>).

- 11.1.8 Нормативное значение пульсационной составляющей основной ветровой нагрузки w_g на эквивалентной высоте z_g необходимо определять следующим образом:
- а) для сооружений (и их конструктивных элементов), у которых первая частота собственных колебаний f_1 , Гц, больше предельного значения собственной частоты f_{lim} , (см. $\underline{11.1.10}$), по формуле

$$w_g = w_m \zeta(z_g) v , \qquad (11.5)$$

где \mathcal{W}_m - определяется в соответствии с 11.1.3;

 $\zeta(z_{\it e})$ - коэффициент пульсации давления ветра, принимаемый по <u>таблице 11.4</u> или формуле (11.6) для эквивалентной высоты $z_{\it e}$ (см. <u>11.1.5</u>);

у- коэффициент пространственной корреляции пульсаций давления ветра (см. <u>11.1.11</u>).

Таблица 11.4

Высота <i>Z_g</i> , м	Коэффициент пулі	Коэффициент пульсаций давления ветра Сдля типов местности			
	А	В	С		
≤5	0,85	1,22	1,78		
10	0,76	1,06	1,78		
20	0,69	0,92	1,50		
40	0,62	0,80	1,26		
60	0,58	0,74	1,14		
80	0,56	0,70	1,06		
100	0,54	0,67	1,00		
150	0,51	0,62	0,90		
200	0,49	0,58	0,84		
250	0,47	0,56	0,80		
300	0,46	0,54	0,76		

$$\zeta(z_{\varrho}) = \zeta_{10}(z_{\varrho}/10)^{-\alpha}$$
 при $10 \le z_{\varrho} \le 300$ м. (11.6)

Примечание - Для высот $z_{\it e}$ <10 м коэффициент $\zeta(z_{\it e})$ определяется по таблице 11.4.

Значение параметров ζ_{10} и α для различных типов местностей приведены в <u>таблице 11.3</u>;

б) для всех сооружений (и их конструктивных элементов), у которых $f_1 < f_{lim} < f_2$ - по формуле

$$w_g = w_m \xi \zeta(z_g) v, \qquad (11.7)$$

где f_2 - вторая собственная частота;

 ξ - коэффициент динамичности, определяемый по <u>рисунку 11.1</u> в зависимости от суммарного логарифмического декремента колебаний δ (см. <u>11.1.10</u>) и безразмерного периода $T_{g,1}$, который определяется по формуле (11.8) для первой собственной частоты f_1 ;

$$T_{g,1} = \frac{\sqrt{w_0 k(z_{3K}) \gamma_f}}{940 f_1} . \tag{11.8}$$

Здесь भो(Па) - нормативное значение давления ветра (см. 11.1.4);

 $k(z_{3K})$ - коэффициент, учитывающий изменение давления ветра для высоты z_{3K} (см. 11.1.6, при $z_e = z_{3K}$);

 γ_f - коэффициент надежности по нагрузке (см. <u>11.4</u>).

Для конструктивных элементов, а также конструкций, расположенных горизонтально или с малым уклоном (например, переходных или транспортных галерей) Z_{3K} - высота z, на которой они расположены; для зданий и сооружений $Z_{3K} = 0.8h$, где h - высота сооружений.

Примечание - Суммарный логарифмический декремент колебаний δ определяется как сумма логарифмического декремента конструкционного демпфирования δ_s и аэродинамического логарифмического декремента δ_a . При использовании различных демпфирующих устройств (например, гасителей колебаний различного типа) дополнительно необходимо учитывать соответствующий логарифмический декремент δ_d . В этих случаях значения суммарного логарифмического декремента δ_d и безразмерного периода T_g 1 определяются в рамках научно-технического сопровождения или в задании на проектирование.

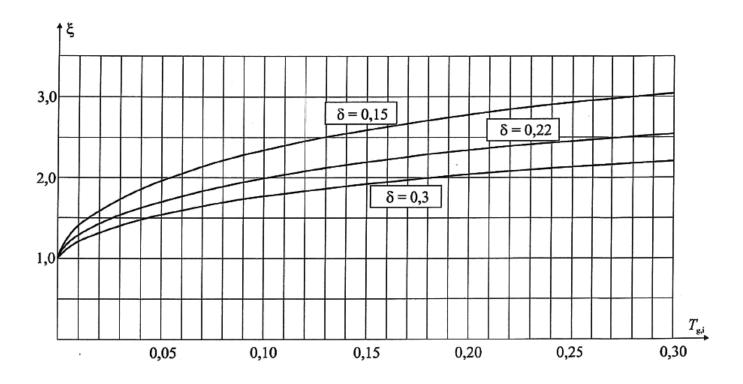


Рисунок 11.1* - Коэффициенты динамичности

в) для сооружений, у которых вторая собственная частота меньше предельной, необходимо производить динамический расчет с учетом s первых форм собственных колебаний.

Число *s* следует определять из условия $f_s < f_{lim} < f_{s+1}$.

При численной реализации используют уточненную методику, приведенную в приложении М;

г) при расчете зданий допускается учитывать динамическую реакцию по трем низшим собственным формам колебаний (двум изгибных и одной крутильной или смешанным крутильно-изгибным).

Примечания

^{*} Измененная редакция, <u>Изм. N 1</u>.

- 1 При расчете многоэтажных железобетонных зданий высотой до 40 м и одноэтажных железобетонных производственных зданий высотой до 36 м при отношении высоты к пролету менее 1,5, размещаемых в местностях типа A и B (см. 11.1.6), пульсационную составляющую ветровой нагрузки допускается определять по формуле (11.5).
- 2 Собственные частоты допускается определять при действии нормативных значений нагрузок (постоянных, длительных, кратковременных), учитываемых для рассматриваемой расчетной ситуации.
 - 3 Расчет зданий и сооружений на действие пульсационной составляющей основной ветровой нагрузки включает:
 - определение усилий и перемещений (суммарных и по формам колебаний);
 - определение сил инерции по формам колебаний;
 - определение предельных частот колебаний;
- оценку усталостной прочности и выносливости элементов сооружения согласно требованиям действующих документов по стандартизации в области проектирования.

(Измененная редакция, Изм. N 1, 2, 3, 5).

11.1.9 Усилия и перемещения при учете динамической реакции по *s* собственным формам определяются по формуле

$$X^2 = \sum X_s^2 \,, \tag{11.9}$$

где X - суммарные усилия или перемещения;

 X_s - усилия или перемещения по s-й форме колебаний.

11.1.10 Предельное значение частоты собственных колебаний $f_{\it lim}$, Гц, следует определять в зависимости от предельного безразмерного периода $T_{\it g, lim}$:

$$f_{lim} = \frac{\sqrt{w_0 k(z_{3K})\gamma_f}}{940T_{g,lim}},$$
(11.9a)

где значение параметра $T_{g,lim}$ приведено в <u>таблице 11.5</u> для трех значений суммарного логарифмического декремента колебаний δ . Таблица 11.5

δ	0,15	0,22	0,3
$T_{\rm g,lim}$	0,0077	0,014	0,023

Значение суммарного логарифмического декремента колебаний δ следует принимать:

- а) для железобетонных и каменных зданий и сооружений, а также для зданий со стальным или смешанным сталежелезобетонным каркасом при наличии сплошных наружных ограждающих конструкций $\delta = 0.3$;
 - б) для стальных сооружений, футерованных дымовых труб, аппаратов колонного типа, в том числе на железобетонных постаментах, δ =0,15;
- в) для конструкций из стекла, а также для смешанных сооружений, имеющих одновременно стальные и железобетонные несущие конструкции при отсутствии сплошных наружных ограждающих конструкций, $\delta = 0,22$.

Примечание - В тех случаях, когда используются различные типы демпфирующих устройств (гасители колебаний), значение суммарного логарифмического декремента колебаний § устанавливается в рамках научно-технического сопровождения проектирования.

(Измененная редакция, Изм. N 1, 5).

11.1.11 Коэффициент пространственной корреляции пульсаций давления *v* следует определять для расчетной поверхности сооружения или отдельной конструкции, для которой учитывается корреляция пульсаций.

Расчетная поверхность включает в себя те части наветренных и подветренных поверхностей, боковых стен, кровли и подобных конструкций, с которых давление ветра передается на рассчитываемый элемент сооружения.

Если расчетная поверхность близка к прямоугольнику, ориентированному так, что его стороны параллельны основным осям (<u>рисунок 11.2</u>), то коэффициент *v* следует определять по <u>таблице 11.6</u> в зависимости от параметров Ри X, принимаемых по <u>таблице 11.7</u>.

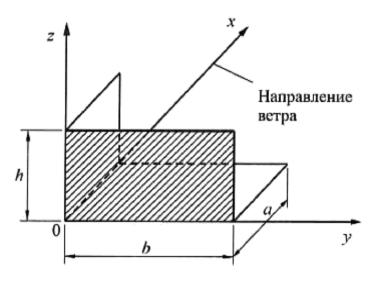


Рисунок 11.2 - Основная система координат при определении коэффициента корреляции ν

Таблица 11.6

ρ, м	Коэффициент <i>∨</i> при χ̂ , м, равном						
	5	10	20	40	80	160	350
0,1	0,95	0,92	0,88	0,83	0,76	0,67	0,56
5	0,89	0,87	0,84	0,80	0,73	0,65	0,54
10	0,85	0,84	0,81	0,77	0,71	0,64	0,53
20	0,80	0,78	0,76	0,73	0,68	0,61	0,51
40	0,72	0,72	0,70	0,67	0,63	0,57	0,48
80	0,63	0,63	0,61	0,59	0,56	0,51	0,44
160	0,53	0,53	0,52	0,50	0,47	0,44	0,38

Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (новая редакция) ИС «Кодекс: 6 поколение» Интранет

При расчете сооружения в целом размеры расчетной поверхности следует определять с учетом указаний В.1 приложения В, при этом для решетчатых сооружений в качестве расчетной поверхности необходимо принимать размеры поверхности по его внешнему контуру.

Таблица 11.7

Основная координатная плоскость, параллельно которой расположена расчетная поверхность	ρ	χ
zoy	Ь	h
zox	0,4 <i>a</i>	h
хоу	ь	а

(Измененная редакция, <u>Изм. N 2</u>).

11.2 Пиковая ветровая нагрузка

Для элементов ограждения и узлов их креплений (в частности, конструкций фахверка, навесных фасадных систем и светопрозрачных конструкций фасадов и покрытий) необходимо учитывать пиковые положительные w_+ и отрицательные w_- воздействия ветровой нагрузки, нормативные значения которых определяются по формуле

$$w_{+(-)} = w_0 k(z_e) [1 + \zeta(z_e)] c_{p,+(-)} v_{+(-)}, \tag{11.10}$$

где \mathcal{W}_0 - нормативное значение давления ветра (см. 11.1.4);

 Z_{g} - эквивалентная высота (см. <u>11.1.5</u>);

 $k(z_{\mathfrak{g}})$ и $\zeta(z_{\mathfrak{g}})$ - коэффициенты, учитывающие, соответственно, изменение давления и пульсаций давления ветра на высоте $z_{\mathfrak{g}}$ (см. $\underline{11.1.6}$ и $\underline{11.1.8}$);

 C $_{p}$, $_{+}(-)$ - пиковые значения аэродинамических коэффициентов положительного давления (+) или отсоса (-);

 $v_{+(-)}$ - коэффициенты корреляции ветровой нагрузки, соответствующие положительному давлению (+) и отсосу (-); значения этих коэффициентов приведены в

таблице 11.8 в зависимости от площади ограждения А, с которой собирается ветровая нагрузка.

Таблица 11.8

А, м ²	<2	5	10	>20
ν ₊	1,0	0,9	0,8	0,75
ν_	1,0	0,85	0,75	0,65

Для отдельно стоящих прямоугольных в плане зданий значения аэродинамических коэффициентов $c_{p,+}$ и $c_{p,-}$ приведены в <u>В.1.17</u>. Во всех остальных случаях коэффициенты $c_{p,+}$ и $c_{p,-}$ определяются на основе результатов модельных испытаний сооружений в аэродинамических трубах или с учетом опубликованных данных.

Примечание - При определении пиковой ветровой нагрузки по формуле (11.10) принято, что конструктивные элементы ограждения и узлы их крепления к зданию являются достаточно жесткими и в них не возникает заметных динамических усилий и перемещений. В случае если собственные частоты системы "элементы ограждения - их несущие конструкции - элементы их крепления" менее их предельных значений, определяемых в соответствии с указаниями 11.1.10, расчетные значения пиковой ветровой нагрузки должны быть уточнены на основе результатов динамического расчета указанной системы конструктивных элементов.

(Измененная редакция, <u>Изм. N 1, 2, 3, 5</u>).

11.3 Резонансное вихревое возбуждение

11.3.1 Для зданий сплошностенчатых сооружений или их отдельных участков с неизменяющимися или плавно изменяющимися формой и размерами поперечного сечения, удовлетворяющих условию $\lambda_e >$ 20, необходимо учитывать возможность их резонансного вихревого возбуждения; здесь λ_e определено в <u>В.1.15</u>.

(Измененная редакция, Изм. N 1, 3).

11.3.2 Критические скорости ветра $V_{cr,i}$, при которых происходит резонансное вихревое возбуждение по i-й собственной форме колебаний, определяются по формуле

$$V_{cr, i} = k_{\nu} f_i d / St_{, M/C},$$
 (11.11)

где f_i , Гц, - собственная частота колебаний по i-й изгибной собственной форме;

d, м, - поперечный размер сооружения;

St - число Струхаля поперечного сечения, определяемое экспериментально или по справочным данным; для круглых поперечных сечений St=0,2; для сечений с острыми кромками (в том числе и прямоугольных) - St=0,11.

Значение коэффициента k_{ν} , учитывающего эффект захвата собственной частоты колебаний, выбирается из диапазона 0,9< k_{ν} <1,1 из условия реализации наихудшего варианта нагружения.

11.3.3 Резонансное вихревое возбуждение не возникает в том случае, если

$$V_{cr,i} > V_{\text{max}}(z_{3K}), \tag{11.12}$$

где $V_{\max}\left(z_{\mathfrak{IK}}\right)$ - максимальная скорость ветра на уровне $z_{\mathfrak{IK}}$, определяемая по формуле

$$V_{\text{max}}(z_{3K}) = 1.5\sqrt{w_0 k(z_{3K})}$$
, (11.13)

где \mathcal{W}_0 , Па, и $k(z_a)$ определяются в соответствии с 11.1.4 и 11.1.6.

Для зданий и башенных сооружений с плавно изменяющейся формой поперечного сечения, а также труб и мачт без оттяжек Z_{3K} =0,8h.

- 11.3.4 Ветровые нагрузки, возникающие при резонансном вихревом возбуждении, допускается определять в соответствии с указаниями раздела В.2 приложения В.
 - 11.4 Коэффициент надежности по нагрузке для основной и пиковой ветровых нагрузок следует принимать равным 1,4.

При расчете на резонансное вихревое возбуждение коэффициент надежности по нагрузке принимают равным 1,0.

(Введен дополнительно, <u>Изм. N 5</u>).

11.5 Экстремальные значения ветровой нагрузки, которые могут привести к возбуждению аэродинамически неустойчивых колебаний типа галопирования, дивергенции и различных видов флаттера, необходимо учитывать в соответствии с <u>СП 296.1325800</u> в особых сочетаниях.

(Введен дополнительно, <u>Изм. N 5</u>).

12 Гололедные нагрузки

12.1 Гололедные нагрузки необходимо учитывать для воздушных линий электропередачи и связи, контактных сетей электрифицированного транспорта,

Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (новая редакция) ИС «Кодекс: 6 поколение» Интранет

антенно-мачтовых устройств, канатов, решетчатых конструкций, шпилей и подобных сооружений.

Для вентилируемых фасадов, стен и покрытий высотных зданий, металлических ограждений балконов и т.п. гололедные нагрузки необходимо учитывать для их элементов, расположенных на высоте более 100 м.

(Измененная редакция, Изм. N 3).

12.2 Нормативное значение линейной гололедной нагрузки для элементов конструкций кругового сечения диаметром до 70 мм включительно *i*, H/м, следует определять по формуле

$$i = \pi b k \mu_1 (d + b k \mu_1) \rho g 10^{-3}$$
 (12.1)

Нормативное значение поверхностной гололедной нагрузки i^t , Па, для остальных элементов конструкций следует определять по формуле

$$i' = bk\mu_2 \rho g . \tag{12.2}$$

В (12.1) и (12.2):

b - нормативное значение толщины стенки гололеда, мм (превышаемое в среднем один раз в 5 лет), на элементах кругового сечения диаметром 10 мм, расположенных на высоте 10 м над поверхностью земли, принимаемое по таблице 12.1, на высоте от 100 до 200 м - по таблице 12.1, а на высоте 200 м и более - по таблице 12.2. Нормативное значение толщины стенки гололеда допускается уточнять в установленном порядке на основе метеорологических данных для места строительства (см. 4.4);

k - коэффициент, учитывающий изменение толщины стенки гололеда по высоте и принимаемый при высоте до 100 м по <u>таблице 12.3</u>; при высоте от 100 до 200 м по формуле: $k_h = \mathrm{e}^{0,007h}$, где h - высота элемента над поверхностью земли, но не более значений $k_h^{\mathrm{max}} = \frac{b_2}{b}$, где b_2 указано в <u>таблице 12.2</u> для высоты 200 м;

при больших высотах - по формуле: $k=1+0.01\left(\frac{b_2}{b_1}-1\right)(h-h_1)$, где b_2u b_1 соответствуют верхнему и нижнему значениям для смежных высот h_2 и h_1 , которые приведены в <u>таблице 12.2</u>;

d, мм - диаметр провода, троса;

μ₁ - коэффициент, учитывающий изменение толщины стенки гололеда в зависимости от диаметра элементов кругового сечения и определяемый по <u>таблице</u> <u>12.4</u>;

μ₂ - коэффициент, учитывающий отношение площади поверхности элемента, подверженной обледенению, к полной площади поверхности элемента и принимаемый для объектов с малыми размерами поперечного сечения равным 0,6, для других объектов - по данным специально проведенных исследований;

- ρ плотность льда, принимаемая равной 0,9 г/см³ ;
- g , м/с 2 ускорение свободного падения.

Таблица 12.1

Гололедные районы (принимаются по карте 3 приложения E)	I	II	III	IV	V
Толщина стенки гололеда <i>b</i> , мм	Не менее 3	5	10	15	Не менее 20

Таблица 12.2

Высота над поверхностью земли, м	Толщина стенки гололеда <i>b</i> , мм, для разных районов					
	I района гололедности азиатской части	V района гололедности и горных местностей	северной части европейской территории	остальных		
200	15	Принимается на основании специальных обследований	Принимается по карте 3, г приложения Е	35		
300	20	То же	То же, по карте 3, д	45		
400	25	ч	" по <u>карте 3, е</u>	60		

Таблица 12.3

Высота над поверхностью земли, м	5	10	20	30	50	70	100
Коэффициент <i>k</i>	0,8	1,0	1,2	1,4	1,6	1,8	2,0

Таблица 12.4

Диаметр провода, троса или каната, мм	5	10	20	30	50	70
Коэффициент µ ₁	1,1	1,0	0,9	0,8	0,7	0,6

Примечания (к таблицам 12.1-12.4)

- 1 В V районе, горных и малоизученных районах, обозначенных на карте 3 приложения <u>Е</u>, а также в сильнопересеченных местностях (на вершинах гор и холмов, на перевалах, на высоких насыпях, в закрытых горных долинах, котловинах, глубоких выемках и т.п.) толщину стенки гололеда необходимо определять на основании данных специальных обследований и наблюдений.
- 2 Промежуточные значения величин следует определять линейной интерполяцией.
- 3 Толщину стенки гололеда на подвешенных горизонтальных элементах кругового сечения (тросах, проводах, канатах) допускается принимать на высоте расположения их приведенного центра тяжести.

Для определения гололедной нагрузки на горизонтальные элементы круговой цилиндрической формы диаметром до 70 мм толщину стенки гололеда, приведенную в <u>таблице 12.2</u>, следует снижать на 10%.

(Измененная редакция, <u>Изм. N 3</u>, <u>5</u>).

- 12.3 При совместном действии ветровой и гололедной нагрузок коэффициенты сочетаний определяются следующим образом:
- а) В том случае, если ветровая нагрузка является основной по степени влияния кратковременной нагрузкой, то гололедные нагрузки допускается не учитывать.
- б) В том случае, если гололедная нагрузка является основной по степени влияния кратковременной нагрузкой, коэффициенты сочетаний (см. <u>6.4</u>) для ветровой нагрузки принимают равными:
 - для покрытых гололедом гибких элементов (провода, тросы, оттяжки, мачты, ванты и др.) коэффициент сочетаний для ветровой нагрузки $\psi_{tn} = 0.25$;
 - для остальных конструктивных элементов, в том числе и при использовании формулы (12.2), коэффициент сочетаний для ветровой нагрузки $\psi_{tn} = 0.6$.

Примечания

1 В отдельных районах, где наблюдаются сочетания значительных скоростей ветра с большими размерами гололедно-изморозевых отложений, толщину стенки гололеда и его плотность, а также давление ветра следует принимать в соответствии с фактическими данными.

(Измененная редакция, Изм. N 3).

12.4 Температуру воздуха при гололеде следует принимать для сооружений высотой до 100 м - минус 5°C, более 100 м - минус 10°C.

(Измененная редакция, Изм. N 3).

- 12.5 Коэффициент надежности по нагрузке γ_f для гололедной нагрузки следует принимать 1,8.
- 12.6 Экстремальные значения гололедной нагрузки необходимо учитывать в соответствии с СП 296.1325800.2017 (таблица А.2 приложения А) в особых сочетаниях для населенных пунктов или в задании на проектирование.

(Введен дополнительно, <u>Изм. N 5</u>).

13 Температурные климатические воздействия

- 13.1 Температурные климатические воздействия подразделяются на два типа:
- а) воздействия, связанные с условиями замыкания конструкций;
- б) воздействия, обусловленные перепадом температуры по сечению элемента, связанные с действием солнечной радиации и (или) с условиями эксплуатации.

(Измененная редакция, Изм. N 3).

13.2 Нормативные значения изменений температур при замыкании конструкций в теплое Δt_w и холодное Δt_c время года соответственно следует определять по формулам:

$$\Delta t_{W} = t_{W} - t_{0c}; \qquad (13.1)$$

$$\Delta t_{c} = t_{c} - t_{0W}, \qquad (13.2)$$

$$\Delta t_c = t_c - t_{0w} \,, \tag{13.2}$$

где t_w , t_c - нормативные значения температур для теплого и холодного времени года, приведенные в таблице 13.1;

 $t_{0w},\ t_{0c}$ - начальные температуры (температуры замыкания) в теплое и холодное время года, принимаемые в соответствии с <u>13.6</u>.

(Измененная редакция, <u>Изм. N 3</u>).

13.3 Нормативные значения температурных воздействий ϑ_w и ϑ_c , обусловленные перепадом температур по сечению элемента в теплое и холодное время года соответственно, для однослойных конструкций следует определять по <u>таблице 13.1</u>.

Таблица 13.1

Конструкции зданий	3д	ания и сооружения в	стадии эксплуатации		
	неотапливаемые здания (без технологических источников тепла) и открытые сооружения	отапливаемые здания	здания с искусственным климатом или с постоянными технологическими источниками тепла		
Не защищенные от воздействия солнечной радиации (в том числе наружные ограждающие)	$t_{w} = t_{ew} + \Theta_{1} + \Theta_{4}$		$t_{\mathbf{w}} = t_{i\mathbf{w}} + 0, \delta(t_{e\mathbf{w}} - t_{i\mathbf{w}}) \pm \theta_2 + \theta_4$		
	Ð _₩ :	= θ ₅	$\vartheta_{w} = 0.8(t_{ew} - t_{iw}) + \theta_3 \pm \theta_5$		
	$t_c = t_{ec} - 0.5\theta_1$	$t_c = t_{ic}$	$t_{ic} + 0.6(t_{ec} - t_{ic}) - 0.5\theta_2$		
	$\vartheta_c = 0$	ϑ_c =	$=0.8(t_{ec}-t_{ic})-0.5\theta_3$		
Защищенные от воздействия солнечной радиации (в том числе внутренние)	£ _W =	= t _{ew}	$t_{\mathcal{W}} = t_{i_{\mathcal{W}}}$		
		િ _₩ =	: 0		

Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (новая редакция) ИС «Кодекс: 6 поколение» Интранет

$$t_c = t_{ec} \qquad \qquad t_c = t_{ic} \label{eq:tc}$$

$$\vartheta_c = 0 \label{eq:tc}$$

Обозначения, принятые в таблице 13.1:

 $t_{
m gw}$, $t_{
m gc}$ - средние суточные температуры наружного воздуха в теплое и холодное время года соответственно, принимаемые в соответствии с 13.4;

 t_{iW} , t_{ic} - температуры внутреннего воздуха помещений в теплое и холодное время года соответственно, принимаемые по заданию на проектирование с учетом технологических решений;

 θ_1 , θ_2 , θ_3 - приращения средних по сечению элемента температур и перепада температур от суточных колебаний температуры наружного воздуха, принимаемые по <u>таблице 13.2</u>;

 θ_4 , θ_5 - приращения средних по сечению элемента температур и перепада температур от солнечной радиации, принимаемые в соответствии с <u>13.5</u>.

Примечания

- 1 При наличии исходных данных о температуре конструкций в стадии эксплуатации зданий с постоянными технологическими источниками тепла значения t_{w} , t_{c} , ϑ_{w} , ϑ_{c} следует принимать на основе этих данных.
- 2 Для зданий и сооружений в стадии возведения $t_{
 m W}$, t_c , $\vartheta_{
 m W}$, ϑ_c определяются как для неотапливаемых зданий в стадии их эксплуатации.
- 3 Для многослойных конструкций t_w , t_c , ϑ_w , ϑ_c определяются расчетом. Конструкции, изготовленные из нескольких материалов, близких по теплофизическим параметрам, допускается рассматривать как однослойные.

Таблица 13.2

Конструкции зданий	Конструкции зданий Приращения температуры ⊖, °С		
	$\Theta_{\mathbf{l}}$	θ ₂	θ ₃
Металлические	8	6	4
Железобетонные, бетонные, армокаменные и каменные толщиной, см:			
до 15	8	6	4
от 15 до 39	6	4	6
свыше 40	2	2	4

(Измененная редакция, Изм. N 3).

13.4 Средние суточные температуры наружного воздуха в теплое t_{ev} и холодное t_{ec} время года для надземной части сооружений следует определять по формулам:

$$t_{ec} = t_{\min} + 0.5A_{\rm I};$$
 (13.3)

$$t_{gw} = t_{\text{max}} - 0.5 A_{\text{VII}}, \tag{13.4}$$

где t_{\min} , t_{\max} - нормативные значения минимальной и максимальной температуры воздуха, соответственно, принимаемые по <u>картам 4</u> и <u>5 приложения E</u>;

 $A_{
m VII}$ - средние суточные амплитуды температуры воздуха наиболее холодного и наиболее теплого месяца, соответственно, принимаемые по <u>таблицам 3.1</u> и <u>4.1 СП 131.13330</u>.

Нормативное значение минимальной и максимальной температуры воздуха допускается уточнять в установленном порядке на основе данных Росгидромета для места строительства (см. $\underline{4.4}$). В этом случае значения t_{\min} и t_{\max} следует вычислять по формулам $t_{\min} = 0.9t_{\min}$, 50 , $t_{\max} = 0.9t_{\max}$, 50 , где t_{\min} , 50 и t_{\max} , 50 - минимальная и максимальная температуры воздуха, абсолютные значения которых превышаются один раз в 50 лет.

Средние суточные температуры наружного воздуха в теплое $t_{
m gw}$ и холодное $t_{
m gc}$ время года для подземной части сооружений следует определять по

формулам:

$$t_{gc} = t_{\min}(h) ; \qquad (13.5)$$

$$t_{\text{gw}} = t_{\text{max}}(h) , \qquad (13.6)$$

где $t_{\min}(h)$ и $t_{\max}(h)$ - средняя минимальная и максимальная температура почвы на глубинах (по вытяжным термометрам), принимаемые согласно <u>приложению Г</u> в зависимости от глубины h заложения подземной части сооружения или по данным Росгидромета.

При расчетах подземной части сооружений следует принимать $\theta_1 = \theta_2 = \theta_3 = \theta_4 = \theta_5 = 0$.

При глубинах более 5 м суточные и сезонные изменения температуры почвы допускается не учитывать.

Примечания

- 1 При отсутствии данных для места строительства значения $A_{\!\! I}$, $A_{\!\! VII}$, $t_{\min}(h)$ и $t_{\max}(h)$ следует принимать по данным Росгидромета или по данным для ближайшего указанного в таблицах населенного пункта.
 - 2 Промежуточные значения для глубины h определяются интерполяцией.
 - 13.5 Приращения θ_4 и θ_5 °C, следует определять по формулам:

$$\theta_4 = 0.05 \rho S_{\text{max}} k$$
; (13.7)

$$\theta_5 = 0.05 \rho S_{\text{max}} (1 - k) , \qquad (13.8)$$

где $\,$ - коэффициент поглощения солнечной радиации материалом наружной поверхности конструкции, принимаемый по <u>таблице 13.3</u>;

 \mathcal{S}_{max} - максимальное значение суммарной (прямой, рассеянной и отраженной) солнечной радиации, Вт·ч/м 2 , принимаемое для горизонтальных поверхностей - по <u>таблице 13.4</u>, для вертикальных поверхностей различной ориентации - по <u>таблице 13.5</u>;

k - коэффициент, принимаемый по <u>таблице 13.6</u>.

Таблица 13.3 - Коэффициенты поглощения солнечной радиации материалом наружной поверхности ограждающей конструкции

Ма	териал наружной поверхности ограждающей конструкции	Коэффициент поглощения солнечной радиации Р
1	Алюминий	0,5
2	Хризотилцементные листы	0,65
3	Асфальтобетон	0,9
4	Бетоны	0,7
5	Дерево неокрашенное	0,6
6	Защитный слой рулонной кровли из светлого гравия	0,65
7	Кирпич глиняный красный	0,7
8	Кирпич силикатный	0,6
9	Облицовка природным камнем белым	0,45
10	Окраска силикатная темно-серая	0,7
11	Окраска известковая белая	0,3
12	Плитка облицовочная керамическая	0,8
13	Плитка облицовочная стеклянная синяя	0,6
14	Плитка облицовочная белая или палевая	0,45
15	Рубероид с песчаной посыпкой	0,9
16	Сталь листовая, окрашенная белой краской	0,45
17	Сталь листовая, окрашенная темно-красной краской	0,8
18	Сталь листовая, окрашенная зеленой краской	0,6

Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (новая редакция) ИС «Кодекс: 6 поколение» Интранет

19	Сталь кровельная оцинкованная	0,65
20	Стекло облицовочное	0,7
21	Штукатурка известковая темно-серая или терракотовая	0,7
22	Штукатурка цементная светло-голубая	0,3
23	Штукатурка цементная темно-зеленая	0,6
24	Штукатурка цементная кремовая	0,4

Таблица 13.4 - Суммарная солнечная радиация (прямая и рассеянная) в июле месяце на горизонтальную поверхность при безоблачном небе, Вт·ч/м² (максимальная часовая сумма)

Географическая широта, град. с. ш.								
38	38 40 42 44 46 48 50 52							
987	968	950	931	913	895	876	858	
	Географическая широта, град. с. ш.							
54	56	58	60	62	64	66	68	
839	821	803	784	766	748	729	711	

Таблица 13.5 - Суммарная солнечная радиация (прямая, рассеянная и отраженная), поступающая в июле месяце на вертикальную поверхность при безоблачном небе, Вт·ч/м ² (максимальная часовая сумма)

Географическая широта, град. с. ш.								
	38	40	42	44	46	48	50	52

Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (новая редакция) ИС «Кодекс: 6 поколение» Интранет

Южная ориентация	389	415	440	465	490	515	540	566
Восточная и западная ориентации	731	737	742	748	754	760	765	771
Северная ориентация	209	209	205	203	204	206	211	219
		Геог	рафическа	я широта,	град. с. ш.			
	54	56	58	60	62	64	66	68
Южная ориентация	591	616	641	666	691	717	742	767
Восточная и западная ориентации	777	783	789	794	800	806	812	817
Северная ориентация	228	240	254	270	288	309	331	356

Таблица 13.6

Конструкции зданий	Коэффициент <i>k</i>
Металлические	0,7
Железобетонные, бетонные, армокаменные и каменные толщиной, см:	
до 15	0,6
от 15 до 39	0,4
свыше 40	0,3

Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (<u>новая редакция</u>) ИС «Кодекс: 6 поколение» Интранет

(Измененная редакция, Изм. N 3).

13.6 Начальную температуру, соответствующую замыканию конструкции или ее части в законченную систему, в теплое $t_{0\nu}$ и холодное t_{0c} время года следует определять по формулам:

$$t_{0w} = 0.8t_{VII} + 0.2t_{I}; (13.9)$$

$$t_{0c} = 0.2t_{VII} + 0.8t_{I}, (13.10)$$

где $t_{
m I}$, $t_{
m VII}$ - многолетние средние месячные температуры воздуха в январе и июле, принимаемые для надземной части сооружений по <u>таблице 5.1 СП 131.13330</u>. Для подземной части сооружений $t_{
m VII} = t_{
m max}(h)$; $t_{
m I} = t_{
m min}(h)$.

Примечания

- 1 При наличии данных о календарном сроке замыкания конструкции, порядке производства работ и других начальную температуру допускается уточнять в соответствии с этими данными.
- 2 При отсутствии данных для места строительства значения $t_{\rm I}$, $t_{\rm VII}$ принимаются по данным Росгидромета или по данным для ближайшего указанного в таблице населенного пункта.
- 13.7 Температурные климатические воздействия с пониженными нормативными значениями необходимо устанавливать в соответствии с указаниями $\underline{13.2-13.6}$ при условии: $\theta_1 = \theta_2 = \theta_3 = \theta_4 = \theta_5 = 0$; $t_{aw} = t_{VII}$, $t_{ac} = t_I$.
 - 13.8 Коэффициент надежности по нагрузке γ_f для температурных климатических воздействий Δt и ϑ следует принимать равным 1,1.
- 13.9 Экстремальные значения температурных климатических воздействий необходимо учитывать в соответствии с <u>СП 296.1325800.2017</u> (таблица А.3 приложения А) в особых сочетаниях для населенных пунктов или в задании на проектирование.

(Введен дополнительно, Изм. N 5).

14 Прочие нагрузки

Нагрузки и воздействия, не включенные в настоящий свод правил (специальные технологические нагрузки, вибрационные нагрузки от всех видов транспорта, влажностные и усадочные воздействия, нагрузки от отложения производственной пыли, от вулканического пепла, песка в пустынных районах), устанавливаются в иных нормах проектирования строительных конструкций, задании на проектирование или в рекомендациях, разработанных в рамках научно-технического сопровождения.

(Измененная редакция, Изм. N 2).

15 Прогибы и перемещения

Нормы настоящего раздела устанавливают предельные прогибы и перемещения несущих и ограждающих конструкций зданий и сооружений при расчете по второй группе предельных состояний при действии статических нагрузок.

Примечание - Требования по ограничению уровня колебаний конструкций устанавливаются в нормах проектирования, санитарных нормах или задании на проектирование.

Положения настоящего раздела не распространяются на сооружения гидротехнические, транспорта, атомных электростанций, а также опор воздушных линий электропередачи, открытых распределительных устройств и антенных сооружений связи.

(Измененная редакция, Изм. N 3).

15.1 Общие указания

15.1.1 При расчете строительных конструкций должно быть выполнено условие

$$f \le f_u \,, \tag{15.1}$$

где f - прогиб (выгиб) и перемещение элемента конструкции (или конструкции в целом), определяемые с учетом факторов, влияющих на их значения, в соответствии с <u>приложением Д</u>;

 f_u - предельный прогиб (выгиб) или перемещение, устанавливаемые настоящими нормами.

Расчет необходимо производить исходя из следующих требований:

- а) технологических (обеспечение условий нормальной эксплуатации технологического и подъемно-транспортного оборудования, контрольно-измерительных приборов и т.д.);
 - б) конструктивных (обеспечение целостности примыкающих друг к другу элементов конструкций и их стыков, обеспечение заданных уклонов);
 - в) физиологических (предотвращение вредных воздействий и ощущений дискомфорта при колебаниях);

г) эстетико-психологических (обеспечение благоприятных впечатлений от внешнего вида конструкций, предотвращение ощущения опасности).

Каждое из указанных требований должно быть выполнено при расчете независимо от других.

(Измененная редакция, Изм. N 3).

- 15.1.2 Расчетные ситуации, для которых следует определять прогибы и перемещения, соответствующие им нагрузки, а также требования, касающиеся строительного подъема, приведены в <u>Д.1.5 приложения Д</u>.
- 15.1.3 Прогибы элементов конструкций не ограничиваются исходя из эстетико-психологических требований, если не ухудшают внешний вид конструкций (например, мембранные покрытия, наклонные козырьки, конструкции с провисающим или приподнятым нижним поясом) или если элементы конструкций скрыты от обзора.

Примечание - Для всех типов покрытий целостность кровельного ковра следует обеспечивать конструктивными мероприятиями (например, использованием компенсаторов, созданием неразрезности элементов покрытия), а не повышением жесткости несущих элементов.

(Измененная редакция, Изм. N 3).

- 15.1.4 Прогибы элементов покрытий должны быть такими, чтобы, несмотря на их наличие, был обеспечен уклон кровли не менее 1/200 в одном из направлений (кроме случаев, оговоренных в других нормативных документах).
 - 15.1.5 Коэффициент динамичности для нагрузок от погрузчиков, электрокаров, мостовых и подвесных кранов следует принимать равным единице.

15.2 Предельные прогибы

- 15.2.1 Предельные прогибы элементов конструкций покрытий и перекрытий, ограничиваемые исходя из технологических, конструктивных и физиологических требований, следует отсчитывать от изогнутой оси, соответствующей состоянию элемента в момент приложения нагрузки, от которой вычисляется прогиб, а ограничиваемые исходя из эстетико-психологических требований от прямой, соединяющей опоры этих элементов (см. также Д.1.7 приложения Д).
- 15.2.2 Расстояние (зазор) от верхней точки тележки мостового крана до нижней точки прогнутых несущих конструкций покрытий (или предметов, прикрепленных к ним) должно быть не менее 100 мм.
 - 15.2.3 Предельные прогибы для различных расчетных ситуаций приведены в Д.2 приложения Д.

(Измененная редакция, <u>Изм. N 3</u>).

Приложение А

Мостовые и подвесные краны

А.1 Мостовые и подвесные краны

Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (новая редакция) ИС «Кодекс: 6 поколение» Интранет

Таблица А.1 - Мостовые и подвесные краны различных групп режимов работы (перечень)

Краны	Группы режимов работы	Условия использования
Ручные всех видов	1K-3K	Любые
С приводными подвесными талями, в том числе с навесными захватами		Ремонтные и перегрузочные работы ограниченной интенсивности
С лебедочными грузовыми тележками, в том числе с навесными захватами		Здания электростанций, монтажные работы, перегрузочные работы ограниченной интенсивности
То же	4K-6K	Перегрузочные работы средней интенсивности, технологические работы в механических цехах, склады готовых изделий предприятий строительных материалов, склады металлосбыта
С грейферами двухканатного типа, магнитно-грейферные		Смешанные склады, работа с разнообразными грузами
Магнитные		Склады полуфабрикатов, работа с разнообразными грузами
Закалочные, ковочные, штыревые, литейные	7К	Цехи металлургических предприятий
С грейферами двухканатного типа, магнитно-грейферные		Склады насыпных грузов и металлолома с однородными грузами (при работе в одну или две смены)
С лебедочными грузовыми тележками, в том числе с навесными захватами		Технологические краны при круглосуточной работе
Траверсные, мульдогрейферные,	8К	Цехи металлургических предприятий

мульдозавалочные, для раздевания слитков, копровые, ваграночные, колодцевые	
Магнитные	Цехи и склады металлургических предприятий, крупные металлобазы с однородными грузами
С грейферами двухканатного типа, магнитно-грейферные	Склады насыпных грузов и металлолома с однородными грузами (при круглосуточной работе)

А.2 Нагрузка от удара крана о тупиковой упор

Нормативное значение горизонтальной нагрузки *F*, кH, направленной вдоль кранового пути и вызываемой ударом крана о тупиковый упор, следует определять по формуле

$$F = \frac{mv^2}{f},\tag{A.1}$$

где ν - скорость передвижения крана в момент удара, принимаемая равной половине номинальной, м/с;

f - возможная наибольшая осадка буфера, принимаемая равной 0,1 м для кранов с гибким подвесом груза грузоподъемностью не более 50 т групп режимов работы 1К-7К и 0,2 м - в остальных случаях;

т - приведенная масса крана, определяемая по формуле

$$m = \frac{m_b}{2} + (m_c + km_q) \frac{l - l_1}{l}, \tag{A.2}$$

здесь m_b - масса моста крана, т;

 m_{c} - масса тележки, т;

 m_q - грузоподъемность крана, т;

k - коэффициент; k =0 - для кранов с гибким подвесом; k =1 - для кранов с жестким подвесом груза;

l - пролет крана, м;

 l_1 - приближение тележки, м.

Расчетное значение рассматриваемой нагрузки с учетом коэффициента надежности по нагрузке ^үƒ (см. <u>9.8</u>) принимается не более предельных значений, приведенных в <u>таблице A.2</u>, или на основе паспортных данных.

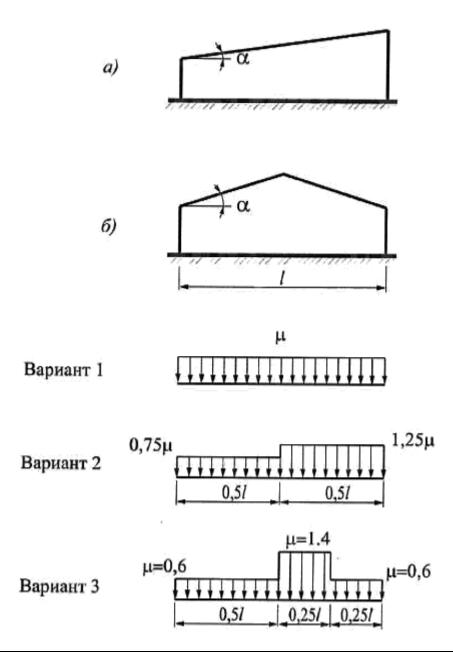
Таблица А.2

Краны	Предельные значения нагрузок <i>F</i> , кН
Подвесные (ручные и электрические) и мостовые ручные	10
Электрические мостовые:	
общего назначения групп режимов работы 1К-3К	50
общего назначения и специальные группы режимов работы 4К-7К, а также литейные	150
Специальные группы режима работы 8К с подвесом груза:	
гибким	250
жестким	500

(Измененная редакция, <u>Изм. N 3</u>).

Приложение Б

Схемы снеговых нагрузок и коэффициенты формы μ^*


^{*} Измененная редакция, <u>Изм. N 2</u>.

Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (новая редакция) ИС «Кодекс: 6 поколение» Интранет

СП 20.13330.2016 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85* (с Изменениями № 1-6)	
Применяется с 04.06.2017 взамен СП 20.13330.2011	

Б.1 Здания с односкатными и двускатными покрытиями

а) Для зданий с односкатными и двускатными покрытиями (<u>рисунок Б.1</u>) коэффициент µопределяется по <u>таблице Б.1</u>. Промежуточные значения определяются линейной интерполяцией.

Рисунок Б.1

Таблица Б.1

Уклон покрытия ॡ, град.	μ
α≤30°	1
α≥60°	0

б) Варианты 2 и 3 следует учитывать для зданий с двускатными покрытиями (профиль δ), при этом вариант 2 - при $15^{\circ} \le \alpha \le 40^{\circ}$; вариант 3 - при $10^{\circ} \le \alpha \le 30^{\circ}$ только при наличии ходовых мостиков или светоаэрационных устройств по коньку покрытия.

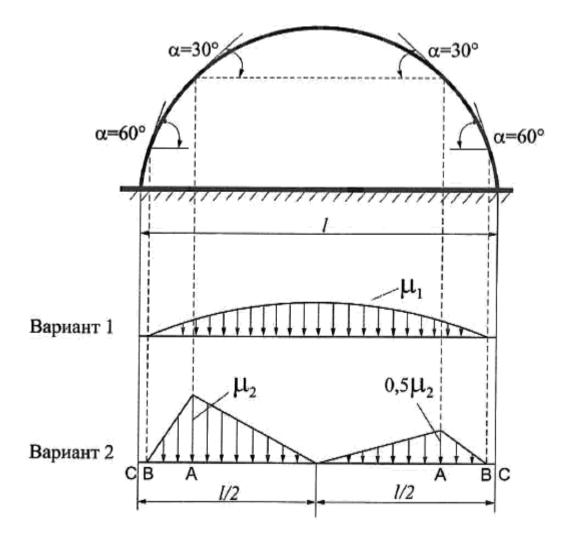
Примечания

- 1 Для конструктивных схем покрытий, чувствительных к локальной неравномерности распределения снеговой нагрузки, необходимо рассмотреть дополнительную схему с коэффициентами μ =0,9 и μ =1,1 на двух скатах в поперечном направлении (см. вариант 2, <u>рисунок Б.1</u>) или в смежных пролетах покрытия по длине здания.
- 2 Для покрытий, имеющих габаритные размеры, превышающие 100 м в обоих направлениях, помимо равномерно распределенной снеговой нагрузки необходимо учитывать случай неравномерно распределенной снеговой нагрузки согласно вариантам 2 или 3 для двускатных покрытий или примечанию 1 для односкатных независимо от их уклона.

(Измененная редакция, <u>Изм. N 3</u>).

Б.2 Здания со сводчатыми и близкими к ним по очертанию покрытиями

Здания со сводчатыми и близкими к ним по очертанию покрытиями


Для зданий со сводчатыми и близкими к ним по очертанию покрытиями (см. рисунок Б.2) следует принимать

$$\mu_1 = \cos(1.5\alpha); \ \mu_2 = 2\sin(3\alpha),$$
 (5.1)

где $\, \alpha ext{-} \,$ уклон покрытия, град; при этом значения $\, \mu_1 \,$ вычисляются в каждой точке покрытия.

Для сводчатых поверхностей кругового очертания значения μ_2 вычисляются в точках с уклоном α =30°, α =60° и в крайнем сечении покрытия (точки A, B и C

на <u>рисунке Б.2</u>). Промежуточные значения μ_2 определяются линейной интерполяцией. Для сводчатых покрытий некругового очертания значения μ_2 вычисляются по формуле (Б.1) в каждой точке. При $\alpha \ge 60^\circ$ μ_1 =0 и μ_2 =0.

Рисунок Б.2

Покрытия в виде стрельчатых арок

Для покрытий в виде стрельчатых арок (рисунок Б.3) при $\beta \ge 15^\circ$ необходимо использовать схему Б.1 - рисунок Б.1,6, принимая l = l', при $\beta < 15^\circ$ схему Б.2 - рисунок Б.2.

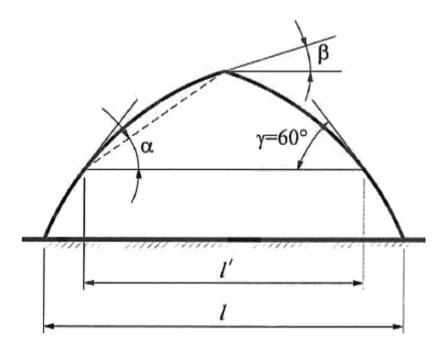
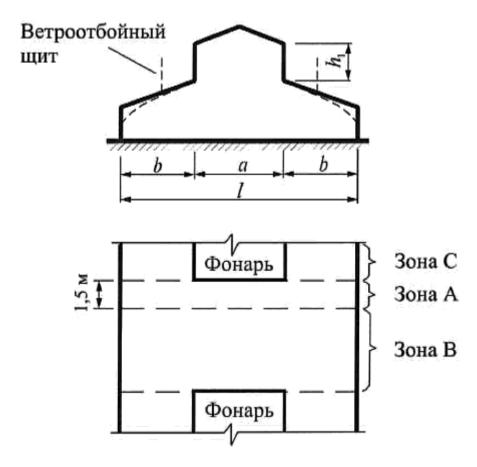


Рисунок Б.3

Подраздел Б.2 (Измененная редакция, Изм. N 2).

Б.3 Здания с продольными фонарями


Здания с продольными фонарями, закрытыми сверху

Для зданий с продольными фонарями (независимо от их расположения на покрытии), закрытыми сверху (<u>рисунок Б.4</u>), для двух схем снеговой нагрузки (<u>рисунок Б.5</u>) коэффициенты μ следует определять как:

$$\mu_1 = 0.8; \ \mu_2 = 1 + 0.1 \frac{a}{b}; \ \mu_3 = 1 + 0.5 \frac{a}{b_l},$$
 (6.2)

но не более 4,0 и не более $3h_l/S_0$; $b_l=h_l$, но не более b. При $h_l< f$, где f - стрела подъема покрытия фонаря, следует принимать $b_l=h_l+f/2$.

При определении нагрузки у торца фонаря для зоны В значение коэффициента μ в обоих вариантах следует принимать равным 1,0.

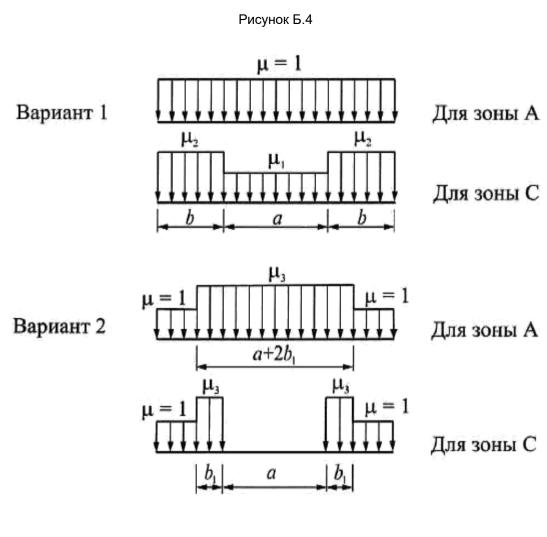


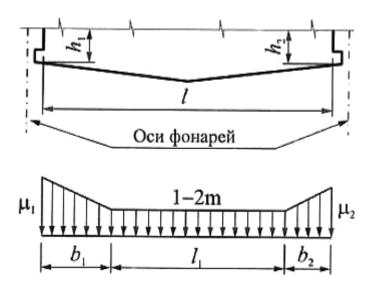
Рисунок Б.5

Примечания

1 Схемы вариантов 1, 2 (рисунок Б.5) следует также применять для двускатных и сводчатых покрытий двух- или многопролетных зданий с фонарями в середине зданий.

- 2 Влияние ветроотбойных щитов на распределение снеговой нагрузки возле фонарей не учитывать.
- 3 Для плоских скатов при *b*>24 м следует учитывать местную повышенную нагрузку у фонаря, как у перепадов (см. рисунки Б.11,а, б).

Здания с продольными фонарями, открытыми сверху


Для зданий с продольными фонарями, открытыми сверху (рисунок Б.6):

$$\mu_1 = 1 + m \left(2 + \frac{l_1}{h_1} \right); \tag{5.3}$$

$$\mu_2 = 1 + m \left(2 + \frac{l_1}{h_2} \right). \tag{5.4}$$

$$\mu_2 = 1 + m \left(2 + \frac{l_1}{h_2} \right). \tag{6.4}$$

Значения b (b_1 , b_2) и m следует определять в соответствии с указаниями к схеме <u>Б.8</u>; пролет l принимается равным расстоянию между верхними кромками фонарей.

Рисунок Б.6

Здания с зенитными фонарями

Для зданий с зенитными фонарями, имеющими диагональ не более 15 м, следует применять схемы по <u>Б.11</u>, имеющими диагональ более 15 м - наиболее неблагоприятные схемы снеговых нагрузок по <u>Б.3</u> и <u>Б.8</u>.

Подраздел Б.3 (Измененная редакция, <u>Изм. N 1, 3, 5</u>).

Б.4 Шедовые покрытия

Схемы рисунка Б.7 следует применять для шедовых покрытий, в том числе с наклонным остеклением и сводчатым очертанием кровли.

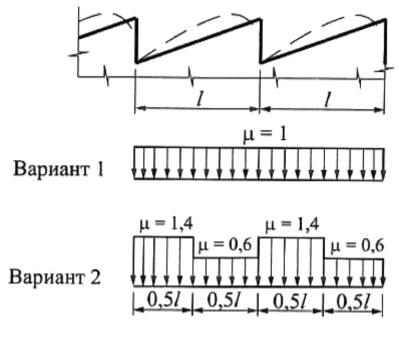


Рисунок Б.7

Б.5 Двух- и многопролетные здания с двускатными покрытиями

Для двух- и многопролетных зданий с двускатными покрытиями (см. рисунок Б.8) вариант 1 следует учитывать во всех случаях, вариант 2 - для двухпролетных

зданий при $\alpha \ge 15^\circ$, вариант 3 - для многопролетных зданий при $\alpha \ge 15^\circ$. Для двух- и многопролетных зданий при $\alpha \ge 30^\circ$ следует учитывать также схему варианта 2 на <u>рисунке Б.9</u>. Для покрытий, имеющих габаритные размеры, превышающие 100 м в обоих направлениях, при $\alpha < 15^\circ$ необходимо учитывать случай неравномерно распределенной снеговой нагрузки с коэффициентами $\mu = 0.9$ и $\mu = 1.1$ в смежных пролетах.

(Измененная редакция, <u>Изм. N 2</u>).

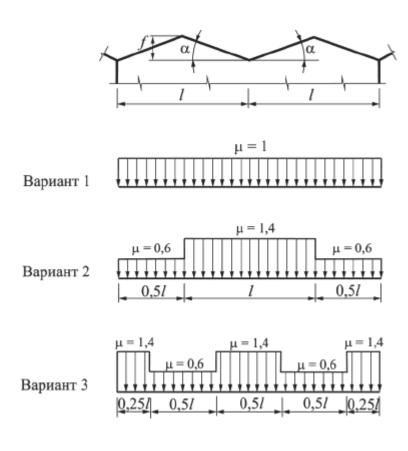
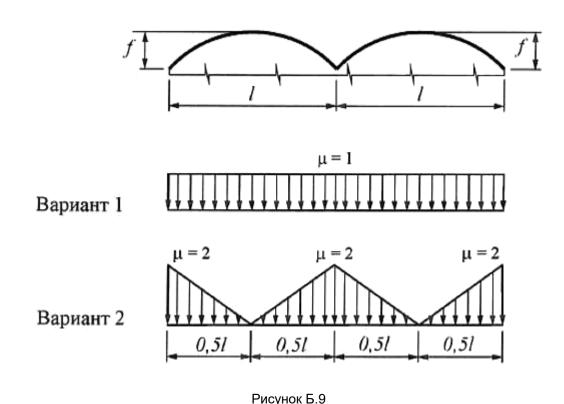



Рисунок Б.8*

^{*} Измененная редакция, Изм. N 2.

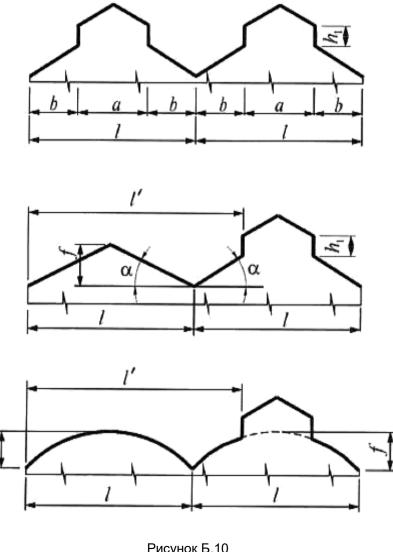
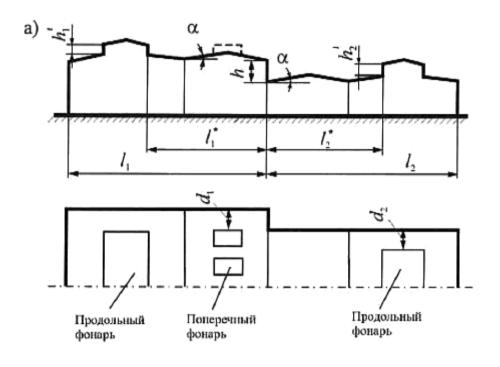
Б.6 Двух- и многопролетные здания со сводчатыми и близкими к ним по очертанию покрытиями

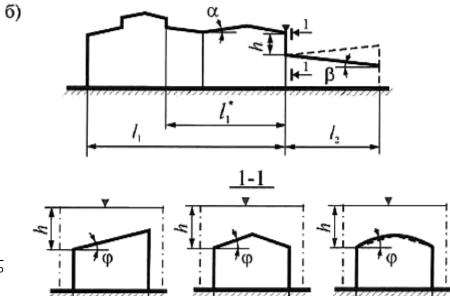
Для двух- и многопролетных зданий со сводчатыми и близкими к ним по очертанию покрытиями (рисунок Б.9) вариант 2 следует учитывать при $\frac{J}{l}$ >0,1.

Б.7 Двух- и многопролетные здания с двускатными и сводчатыми покрытиями с продольным фонарем

- а) Для пролетов с фонарем двух- и многопролетных зданий с двускатными и сводчатыми покрытиями (<u>рисунок Б.10</u>) коэффициент µследует принимать в соответствии с вариантами 1 и 2 <u>Б.3</u> (<u>рисунок Б.5</u>), для пролетов без фонаря с вариантами 1 и 2 <u>Б.6</u> (<u>рисунки Б.8</u>, <u>Б.9</u>).
 - б) Для плоских двускатных (α <15°) и сводчатых $\frac{f}{l}$ <0,1 покрытий при l^t >48 м следует учитывать местную повышенную нагрузку, как у перепадов высоты

(рисунок Б.11, а).


Рисунок Б.10

Подраздел Б.7 (Измененная редакция, Изм. N 3).

Б.8 Здания с перепадом высоты

а

a

Јокумент с изменениями и дополнениями (<u>новая редакция</u>)

Рисунок Б.11

б) Коэффициент Дследует принимать равным

$$\mu = 1 + \frac{1}{h} (m_1 l_1' + m_2 l_2'), \tag{6.5}$$

где *h* - высота перепада, м, отсчитываемая от верхней точки конструкций более высокой части здания у перепада высот до кровли нижнего покрытия. При *h* более 8 м при определении µ принимают *h*=8 м;

 l_1' ; l_2' - длины участков верхнего (l_1') и нижнего (l_2') покрытия, с которых переносится снег в зону перепада высоты, м, их следует принимать:

для покрытия без продольных фонарей или с поперечными фонарями

$$l_1' = l_1; \quad l_2' = l_2;$$

для покрытия с продольными фонарями или ступенчатыми перепадами высот

$$l_1' = l_1^* - 2h_1'; \quad l_2' = l_2^* - 2h_2'.$$

При этом l_1' и l_2' следует принимать не менее 0;

 m_1 ; m_2 - доли снега, переносимого ветром к перепаду высоты; их значения для верхнего m_1 и нижнего m_2 покрытий следует принимать в зависимости от их профиля:

- 0,4 для плоского покрытия с $\alpha \le 20^\circ$, сводчатого с $f/l \le 1/8$;
- 0,3 для плоского покрытия с α >20°, сводчатого с f/l >1/8 и покрытий с поперечными фонарями.

Длину l_2' участка переноса по нижнему покрытию, не имеющему парапетов, следует принимать не более утроенной его ширины.

в) Для пониженных покрытий шириной a <21 м (см. рисунок Б.11,6) значение m_2 следует принимать:

$$m_2 = 0,5k_1k_2k_3$$
, но не менее 0,1, где $k_1 = \sqrt{\frac{a}{21}}$, $k_2 = 1 - \frac{\beta}{35}$ (при обратном уклоне, показанном на чертеже пунктиром, $k_2 = 1$); $k_3 = 1 - \frac{\phi}{30}$, но не менее 0,3 (a

-вм; β, Ф-вград).

г) Длину зоны повышенных снегоотложений b следует принимать равной:

при
$$\mu \leq \frac{2h}{S_0}$$
 $b=2h$, но не более 16 м;

при
$$\mu > \frac{2h}{S_0}$$

$$b = \frac{\mu - 1 + 2m_2}{\frac{2h}{S_0} - 1 + 2m_2} 2h \tag{5.6}$$

но не более 5h и не более 16 м, где μ принимается из пункта 6).

д) Коэффициенты μ , принимаемые для расчетов (показанные на схемах для трех вариантов), не должны превышать:

$$rac{2h}{S_0}$$
 (где h - в м; S_0 - в кПа);

4 - если нижнее покрытие является покрытием здания, а l_1' и $l_2' \le 48$ мм*;

6 - если нижнее покрытие является навесом или покрытием здания и $\ l_1'$ или $\ l_2'$ >72 м.

Промежуточные значения определяются интерполяцией для наибольшего значения из l_1' или l_2' .

e) Коэффициент $\,\mu_1\,$ следует принимать:

 $\mu_1 = 1 - 2m_2$ для покрытий с парапетами и без парапетов при $b \ge l_2'$;

^{*} Текст документа соответствует оригиналу. - Примечание изготовителя базы данных.

 $\mu_1 = 1 - 2m_2$ для покрытий без парапетов при $\mu \leq \frac{2h}{S_0}$, где μ принимается из перечисления б);

$$\mu_{\!\!1} = 1 - rac{m_2 l_2'}{l_2' - h}$$
 при $l_2' > b$ и $\mu \leq rac{2h}{\mathcal{S}_0}$ - для покрытий с парапетами, где μ принимается из пункта б);

$$\mu_1 = \frac{l_2' - 0.5 \mu b}{l_2' - 0.5 b}$$
 - в остальных случаях, где μ принимается из пункта д), но не менее 0,2.

ж) При наличии между нижерасположенным покрытием и стенкой перепада высот разрыва шириной не более 1,5 м местную повышенную снеговую нагрузку на покрытие в зоне перепада следует определять так же, как для покрытий без разрыва. При этом для нижерасположенного покрытия принимается только приходящаяся на него часть трапециевидной эпюры коэффициента μ .

Примечания

- 1 При $d_1(d_2)$ >12 м значение μ для участка перепада длиной $d_1(d_2)$ (рисунок <u>Б.11,а</u>) следует определять без учета влияния фонарей на повышенном (пониженном) покрытии.
- 2 Если пролеты верхнего (нижнего) покрытия имеют различный профиль, то при определении μ необходимо принимать соответствующее значение $m_1(m_2)$ для каждого пролета в пределах $l_1'(l_2')$.
 - 3 Местную нагрузку у перепада не следует учитывать, если высота перепада, м, между двумя смежными покрытиями менее $\frac{S_0}{2}$ (где S_0 в кПа).
 - 4 При наличии возле перепада на верхнем покрытии сплошного парапета высотой h более 0,5 S_0 , кПа и более 1,2 м допускается принимать m_1 =0.

Подраздел Б.8 (Измененная редакция, <u>Изм. N 1, 2, 3, 5</u>).

Б.9 Здания с двумя перепадами высоты

Для зданий с двумя перепадами высоты снеговую нагрузку на верхние и нижние покрытия следует принимать по схеме, приведенной на <u>рисунке Б.12</u>. Значения μ_1 , b_1 , μ_2 , b_2 следует определять для каждого перепада независимо, принимая: m_1 и m_2 по <u>схеме Б.9</u> (при определении нагрузок возле перепадов h_1 и h_2) соответствующими m_1 в <u>схеме Б.8</u> и m_3 (доля снега, переносимого ветром по пониженному покрытию) соответствующим m_2 в <u>схеме Б.8</u>.

При наложении зон повышенных снегоотложений (см. вариант 2 на рисунке Б.12):

$$b_3 = b_1 + b_2 - l_3; (6.7)$$

$$\mu_1' = (\mu_1 + 2m_3 - 1)\frac{b_3}{b_1} + 1 - 2m_3;$$
(5.8)

$$\mu_2' = (\mu_2 + 2m_3 - 1)\frac{b_3}{b_2} + 1 - 2m_3$$
 (6.9)

Если $b_3 > b_1$ и/или $b_3 > b_2$, то принимается огибающая полученных эпюр μ_1 и μ_2 .

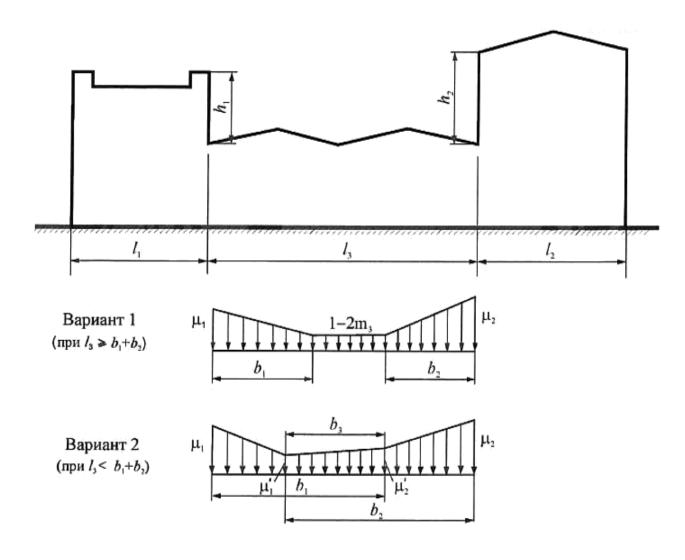
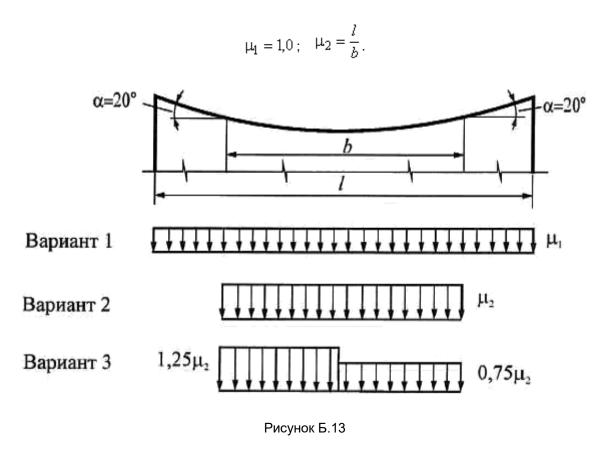
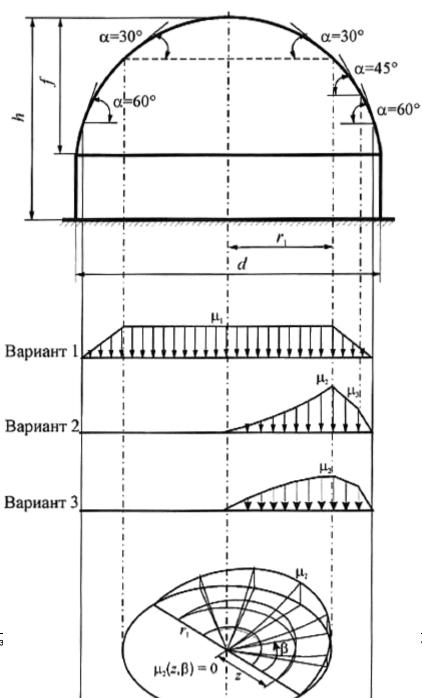



Рисунок Б.12


Б.10 Висячие покрытия цилиндрической формы

Для висячих покрытий цилиндрической формы (рисунок Б.13) следует принимать:

Б.11 Здания с купольными круговыми и близкими к ним по очертанию покрытиями

а) Для зданий с купольными круговыми и близкими к ним по очертанию покрытиями (<u>рисунок Б.14</u>) коэффициент μ_1 определяется по <u>таблице Б.2</u>. Промежуточные значения определяются линейной интерполяцией. При максимальном уклоне α < 30° принимается $r_1 = d/2$.

¹я" Документ с изменениями и дополнениями (<u>новая редакция</u>)

Рисунок Б.14

Таблица Б.2

Уклон покрытия ॡ, град.	μ_1
α≤30°	1
α≥60°	0

Для пологих куполов с отношением $f/d \le 0.05$ следует учитывать только вариант 1.

Для куполов с отношением f/d > 0.05 следует учитывать варианты 1, 2 и 3 при уклонах $\alpha < 60^\circ$.

Для варианта 2 на рисунке Б.14 следует принимать при $z \le \eta$

$$\mu_2 = C_{r1}(z/\eta)^2 \sin \beta,$$
(5.10)

где
$$C_{r1} = 2,55 - \exp\left(0,8 - 14\frac{f}{d}\right)$$
,

при $z > r_1 \mu_3 = 1.5 \sin \beta$ при $\alpha = 45^\circ$; $\mu_3 = 0$ при $\alpha > 60^\circ$.

Промежуточные значения определяются линейной интерполяцией.

Для варианта 3 следует принимать

$$\mu_2 = 3\sqrt{\frac{2f}{d}\sin(3\alpha)}\sin\beta. \tag{6.11}$$

Вариант 3 следует учитывать для куполов с f/d >0,05 при сильно шероховатой поверхности покрытия, наличии на нем возвышающихся надстроек, фонарей или снегозадерживающих преград, а также для покрытий, защищенных от ветра соседними более высокими зданиями или объектами окружающей застройки.

б) Для покрытий в виде сочетания двух сферических поверхностей различной кривизны на круглом плане следует учитывать снеговые нагрузки, как показано на

рисунке Б.14а.

Здесь В-В - линия сопряжения поверхностей различной кривизны; α_1 - уклон нижней поверхности; α_2 - уклон верхностей в 30° либо уклону в точке A, если он составляет не более 30°. Остальные обозначения показаны на рисунке Б.14а.

Для варианта 1 на участке А-В шириной l_1 $\mu_1 = \cos(1.5\alpha_1)$; на участке В-В шириной l_2 $\mu_1 = \cos(1.5\alpha_2)$. При $\alpha_1 \le 7^\circ$ и $l_1 < d/8$ следует учитывать только вариант 1.

Для вариантов 2 и 3 коэффициент μ_2 вычисляется согласно Б.11, перечисление а) по схеме варианта 2 на рисунке Б.14. Коэффициент μ_3 вычисляется по схеме варианта 2 на рисунке Б.14 для центральной части покрытия при $r_1 = l_2 / 2$.

При 7°< $\alpha_2 \le 15^\circ$ следует учитывать варианты 1 и 2; при 15°< $\alpha_2 \le 30^\circ$ следует учитывать варианты 1 и 3. При $\alpha_2 > 30^\circ$ следует учитывать схемы по перечислению а) <u>Б.11</u> без учета изменения геометрии поверхности.

Для покрытий в виде сочетания двух сферических поверхностей различной кривизны на эллиптическом плане следует выполнить расчет коэффициентов μ_l , μ_2 и μ_3 независимо для большего и меньшего диаметров эллипса, как указано выше, с интерполяцией полученных значений снеговой нагрузки для промежуточных направлений.

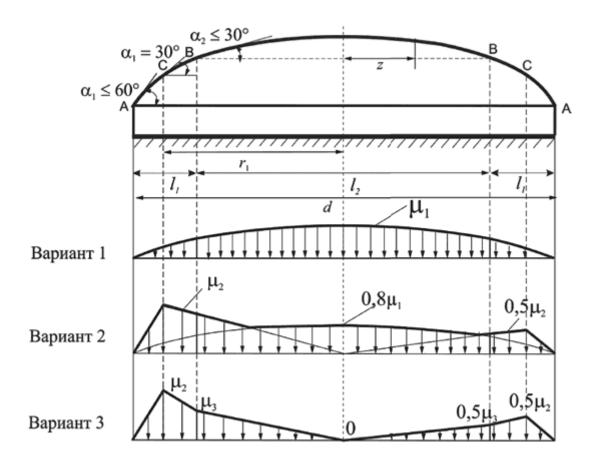


Рисунок Б.14а

Подраздел Б.11. (Измененная редакция, <u>Изм. N 2</u>, <u>5</u>).

Б.12 Здания с коническими круговыми покрытиями и покрытиями в виде сочетания сферической и конической поверхностей*

^{*} Измененная редакция, <u>Изм. N 2</u>.

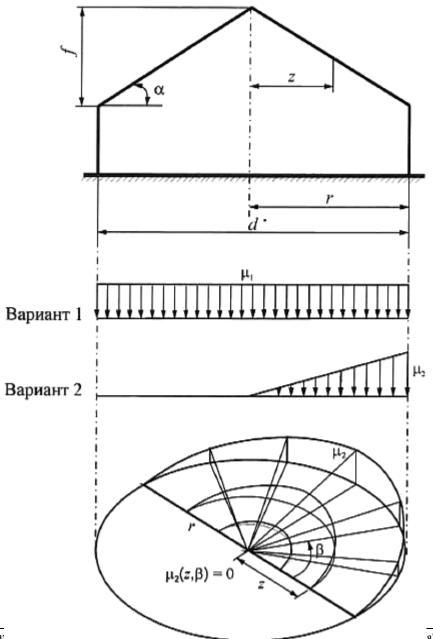
а) Для зданий с коническими круговыми покрытиями (см. <u>рисунок Б.15</u>) коэффициент µ₁ определяется по <u>таблице Б.3</u>. Промежуточные значения определяются линейной интерполяцией.

Таблица Б.3

Уклон покрытия ்	μ_1
α≤30°	1
60°	0

Для пологих куполов при $\alpha \le 7^{\circ}$ следует учитывать только вариант 1.

Для менее пологих куполов при $7^{\circ} < \alpha \le 30^{\circ}$ для варианта 2 следует принимать

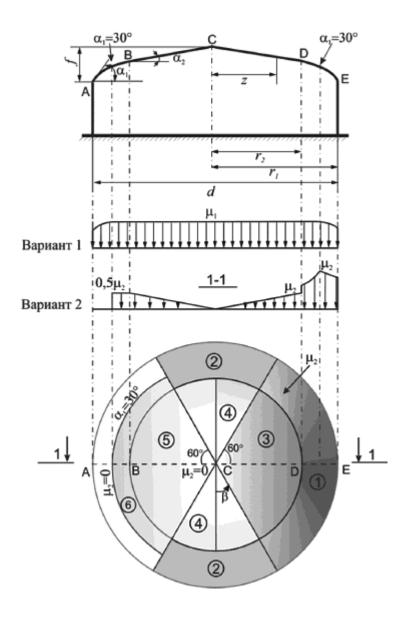

$$\mu_2 = C_{r2}(z/r) \sin \beta,$$
 (5.12)

$$_{\text{где}} C_{r2} = 2,15 \sqrt[3]{\frac{\alpha \pi}{180^{\circ}}}$$
.

При 30° < α <60° для варианта 2 следует принимать:

$$\mu_2 = C_{r2}(z/r)\sin\beta; \ C_{r2} = 1,7(30^\circ/\alpha),$$
 (5.13)

где α - в градусах.


Рисунок Б.15

б) Для зданий с круговыми покрытиями в виде сочетания сферической и конической поверхностей (см. <u>рисунок Б.15а</u>) коэффициент μ_1 определяется по <u>таблице Б.3</u>.

Коэффициент μ_2 для варианта 2 (см. рисунок Б.15а) определяется следующим образом:

- на участке 1 по формуле (Б.10) в зависимости от уклона α_1 при z , принимаемом как радиус круга, расположенный между D и E;
- на участке 2 0,5 $\mu_{2,max}$, где $\mu_{2,max}$ вычисляется по формуле (Б.10) при β =90°;
- на участках 3 и 4 по формулам (Б.12) или (Б.13) в зависимости от уклона α_2 ;
- на участке 5 $\mu_2 = 0.8\mu_1$ при 7°< $\alpha_1 \le 15$ °; 0,5 μ_2 при 15°< $\alpha_1 \le 30$ ° и $\mu_2 = 0$ при $\alpha_1 > 30$ °;
- на участке 6 0,5 μ_2 , где μ_2 вычисляется по формуле (Б.10) в зависимости от уклона α_1 .

Для пологих куполов при $\alpha_1 \le 10^\circ$ и $\alpha_2 \le 7^\circ$ следует учитывать только вариант 1.

Рисунок Б.15а

Для покрытий, рассматриваемых в перечислении б), должно соблюдаться условие $\alpha_1 > \alpha_2$.

Подраздел Б.12. (Измененная редакция, Изм. N 2).

Б.13 Покрытие с парапетами

а) Снеговую нагрузку на покрытие возле парапетов следует принимать по схеме, приведенной на рисунке Б.16.

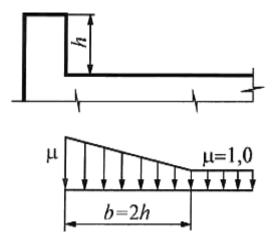


Рисунок Б.16

б) Схему на <u>рисунке Б.16</u> для покрытий с парапетами следует применять при $h > \frac{S_0}{2}$ (h - в м; S_0 - в кПа);

$$\mu = \frac{2h}{S_0}$$
 , но не более 3.

в) Для плоских (α <15°) и сводчатых $\left(\frac{f}{l}$ <0,1 $\right)$ покрытий при длине зоны переноса снега l>24 м, а также при высоте парапета более 1,2 м следует учитывать местную повышенную нагрузку, как у перепадов высоты (см. рисунк Б.11), в том случае, если эта схема более неблагоприятна, чем показанная на рисунке Б.16. При этом коэффициент формы μ принимают не более $3h/S_0$.

Подраздел Б.13 (Измененная редакция, <u>Изм. N 1, 5</u>).

Б.14 Участки покрытий, примыкающие к возвышающимся над кровлей вентиляционным шахтам и другим надстройкам

- а) Схема на рисунке Б.17 относится к участкам с надстройками с диагональю основания не более 15 м.
- б) В зависимости от рассчитываемой конструкции (плит покрытия, подстропильных и стропильных конструкций) необходимо учитывать самое неблагоприятное положение зоны повышенной нагрузки (при произвольном угле β).
- в) Коэффициент µдля участков покрытий, примыкающих к возвышающимся над кровлей вентиляционным, лестничным шахтам, зенитным фонарям и другим надстройкам (рисунок Б.17), постоянный в пределах указанной зоны, следует принимать равным:

1,0 при а≤1,5 м;

 $\frac{2h}{S_0}$ при *d*>1,5 м,

но не менее 1,0 и не более:

1,5 при 1,5 $< d \le 5$ м;

2,0 при $5 < d \le 10$ м;

2,5 при $10 < d \le 15$ м;

 $b_1 = 2h$, но не более 2*d* и не более 16 м.

Наличие зенитных фонарей и надстроек с диагональю не более 5 м, возвышающихся над кровлей не более чем на 0,4 м, допускается не учитывать.

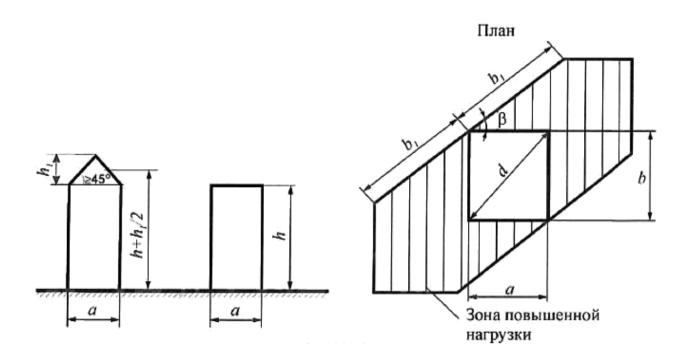


Рисунок Б.17

Для лестниц или иных надстроек, имеющих диагональ более 5 м, высоту более 2 м и примыкающих к парапетам зданий, следует дополнительно учитывать местную повышенную нагрузку, как у перепадов высоты (см. на <u>рисунке Б.11</u>).

Подраздел Б.14 (Измененная редакция, <u>Изм. N 1, 3</u>).

Приложение В

Ветровые нагрузки

В.1 Аэродинамические коэффициенты

В.1.1 Отдельно стоящие плоские сплошные конструкции (стены, заборы и т.д.)

Для различных участков конструкций (рисунок В.1) коэффициент c_x определяется по таблице В.1;

$$z_e = h$$
.

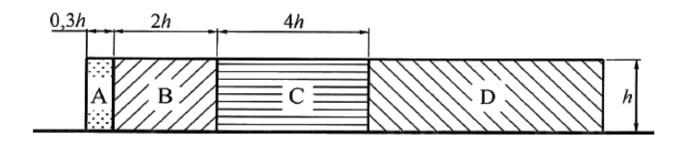


Рисунок В.1

Таблица В.1

Участки плоских сплошных конструкций на земле (см. <u>рисунок В.1</u>)					
A B C D					
2,1 1,8 1,4 1,2					

Рекламные щиты

Для рекламных щитов, поднятых над землей на высоту не менее d/4 (рисунок B.2): $c_x = 2,5k_\lambda$, где k_λ - определено в B.1.15.

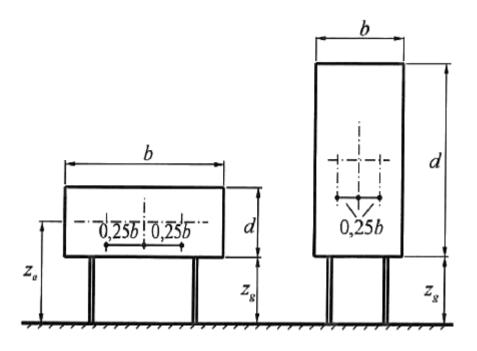


Рисунок В.2

Равнодействующую нагрузку, направленную по нормали к плоскости щита, следует прикладывать на высоте его геометрического центра с эксцентриситетом в горизонтальном направлении *e*=±0,25*b*.

$$z_e = z_g + d/2$$
.

В.1.2 Прямоугольные в плане здания с двускатными покрытиями

Вертикальные стены прямоугольных в плане зданий

Таблица В.2

Боковые стены	Наветренная стена	Подветренная стена
Участки		

А	В	С	D	Е
-1,0	-0,8	-0,5	0,8	-0,5

Для наветренных, подветренных и различных участков боковых стен (рисунок B.3) аэродинамические коэффициенты \mathcal{C}_{g} приведены в <u>таблице B.2</u>. Для стен с отрицательным уклоном при 45°< θ <90° (см. рисунок B.3) аэродинамические коэффициенты определяются так же, как и для вертикальных стен.

Для боковых стен с выступающими лоджиями аэродинамический коэффициент трения $c_f = 0,1$.

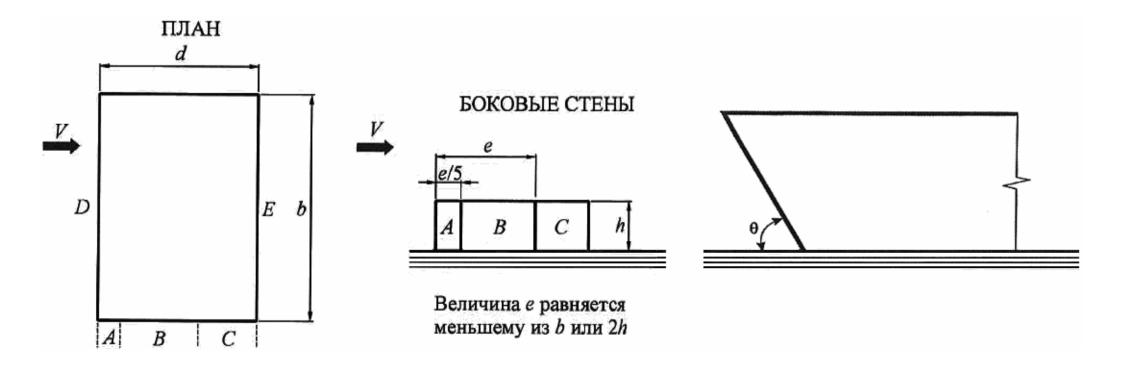
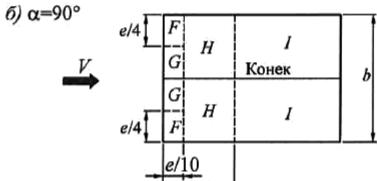


Рисунок В.3*

^{*} Измененная редакция, Изм. N 2.

Двускатные покрытия


Для различных участков покрытия (рисунок В.4) коэффициент $c_{\mathfrak{g}}$ определяется по таблицам В.3,а и В.3,б в зависимости от направления средней скорости ветра.

Для углов 15°≤ β≤30° при α=0° необходимо рассмотреть два варианта распределения расчетной ветровой нагрузки.

Для протяженных гладких покрытий при $\alpha = 90^{\circ}$ (рисунок В.4,б) аэродинамический коэффициент трения $c_f = 0.02$.

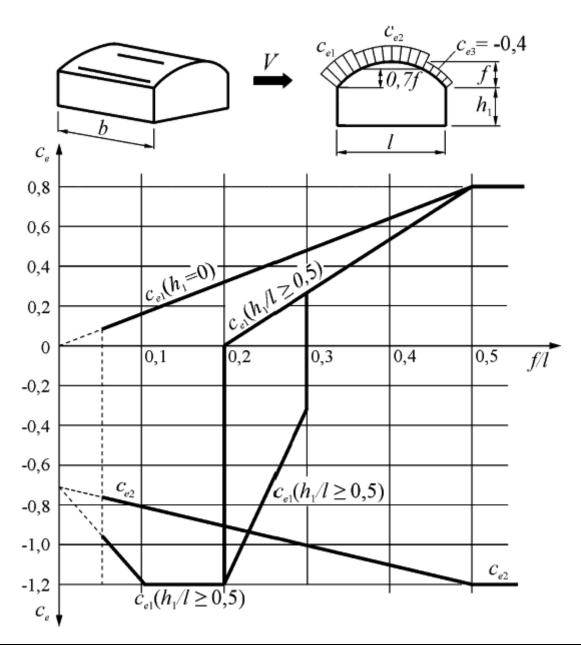
Рисунок В.4

Таблица В.3а

-00	_	∩°

Уклон β	F	G	Н	I	J
0°	-1,8	-1,3	-0,7	-0,5	-0,5
15°	-0,9	-0,8	-0,3	-0,4	-1,0
	0,2	0,2	0,2		
30°	-0,5	-0,5	-0,2	-0,4	-0,5
	0,7	0,7	0,4		
45°	0,7	0,7	0,6	-0,2	-0,3
60°	0,7	0,7	0,7	-0,2	-0,3
75°	0,8	0,8	0,8	-0,2	-0,3

Таблица В.3б


α=90°

Уклон β	F	G	Н	I
0°	-1,8	-1,3	-0,7	-0,5
15°	-1,3	-1,3	-0,6	-0,5
30°	-1,1	-1,4	-0,8	-0,5

45°	-1,1	-1,4	-0,9	-0,5
60°	-1,1	-1,2	-0,8	-0,5
75°	-1,1	-1,2	-0,8	-0,5

Пункт В.1.2 (Измененная редакция, <u>Изм. N 2</u>).

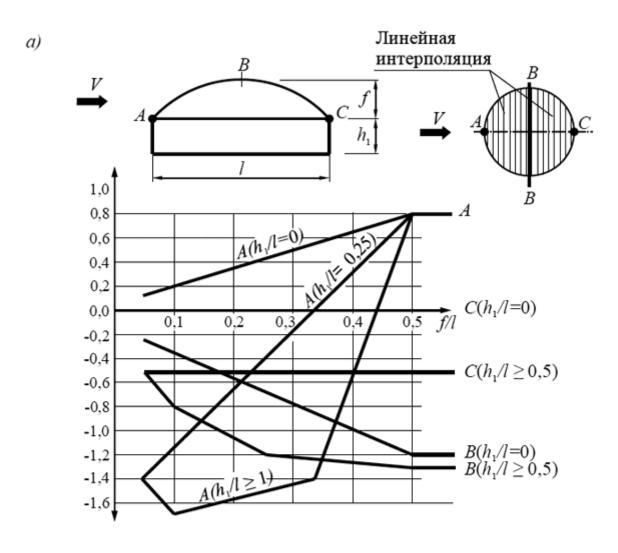
В.1.3 Прямоугольные в плане здания со сводчатыми и близкими к ним по очертанию покрытиями

Примечание - При $0.2 \le f/l \le 0.3$ и $k_1/l \ge 0.5$ необходимо учитывать два значения коэффициента c_{g1} .

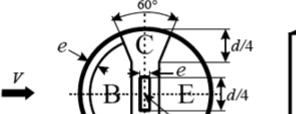
Рисунок В.5*

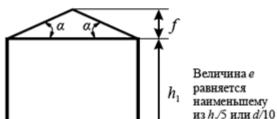
Распределение аэродинамических коэффициентов c_g по поверхности покрытия приведено на <u>рисунке B.5</u>.

Аэродинамические коэффициенты c_g для стен принимаются в соответствии с таблицей В.2.


При определении эквивалентной высоты $z_{\mathfrak{g}}$ (см. $\underline{11.1.5}$) и коэффициента v в соответствии с $\underline{11.1.11}$: $h=h_1+0.7f$.

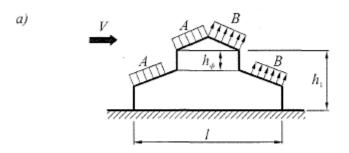
В.1.4 Круглые в плане сооружения с купольными и коническими покрытиями


- а) Для купольных покрытий значения коэффициентов c_e принимают постоянными вдоль сечений, параллельных В-В. Их значения в точках A и C, а также в сечении В-В, приведены на рисунке В.6, а. Для промежуточных сечений коэффициенты c_e определяют линейной интерполяцией.
- б) Для конических покрытий значения аэродинамических коэффициентов внешнего давления c_g при 15°< α <30° определяются (см. рисунок В.6, б) следующим образом:
 - для участка A коэффициент c_{g} =-1,5;
 - для участка B коэффициент c_{ϱ} =-1,0;
 - для участка C коэффициент c_{g} =-1,1;
 - для участка *D* коэффициент c_{g} =-2,0;
 - для участка *E* коэффициент $c_g = -0.7$;
 - для купольных и конических покрытий при определении эквивалентной высоты Z_g в соответствии с 11.1.5 и коэффициента γ в соответствии с 11.1.11


^{*} Измененная редакция, Изм. N 1, 3.

 $h = h_1 + 0.7f.$

Ő)



нениями и дополнениями (<u>новая редакция</u>)

Рисунок В.6

Пункт В.1.4 (Измененная редакция, <u>Изм. N 2, 3</u>).

В.1.5 Здания с продольными фонарями и здания переменной высоты*

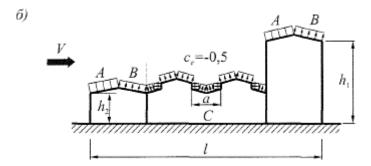


Рисунок В.7

Для участков A и B (рисунок B.7) коэффициенты c_{g} следует определять в соответствии с таблицами B.3,а и B.3,6.

Для фонарей участка C при $\chi \le 2$ $c_\chi = 0.2$; при $2 \le \chi \le 8$ для каждого фонаря $c_\chi = 0.1 \lambda$; при $\chi > 8$ $c_\chi = 0.8$, здесь $\chi = a/h_{\tilde{\Phi}}$.

^{*} Измененная редакция, <u>Изм. N 2</u>.

Для остальных участков покрытия c_{g} =-0,5.

Для вертикальных поверхностей и стен зданий коэффициенты c_e следует определять в соответствии с таблицей В.2.

При определении эквивалентной высоты Z_s (см. <u>11.1.5</u>) и коэффициента v в соответствии с <u>11.1.11</u>: $h=k_1$.

В.1.6 Здания с зенитными фонарями

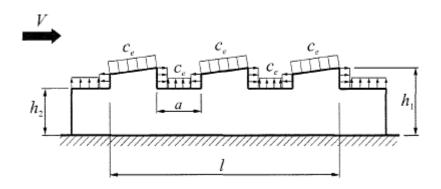


Рисунок В.8

Для наветренного фонаря коэффициент c_{g} следует определять в соответствии с <u>таблицами В.3,а</u> и <u>В.3,б</u>.

Для остальных фонарей коэффициенты c_x определяются так же, как и для участка C (раздел B.1.5).

Для остальной части покрытия c_{ϱ} =-0,5.

Для вертикальных поверхностей и стен зданий коэффициенты c_g следует определять в соответствии с <u>таблицей В.2</u>.

При определении эквивалентной высоты $z_{\mathfrak{g}}$ (см. $\underline{11.1.5}$) и коэффициента v в соответствии с $\underline{11.1.11}$ $h=h_1$.

В.1.7 Здания с шедовыми покрытиями

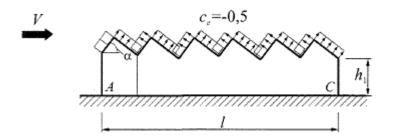


Рисунок В.9

Для участка А коэффициент c_{g} следует определять в соответствии с <u>таблицами В.3,а</u> и <u>В.3,б</u>. Для остальной части покрытия c_{g} =-0,5.

Для вертикальных поверхностей и стен зданий коэффициенты c_g следует определять в соответствии с таблицей В.2.

При определении эквивалентной высоты $\mathcal{Z}_{\mathfrak{g}}$ (11.1.5) и коэффициента v (11.1.11) h=h1.

Для шедовых покрытий аэродинамический коэффициент трения $c_f = 0.04$.

В.1.8 Здания с уступами

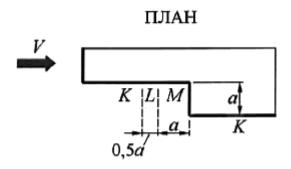
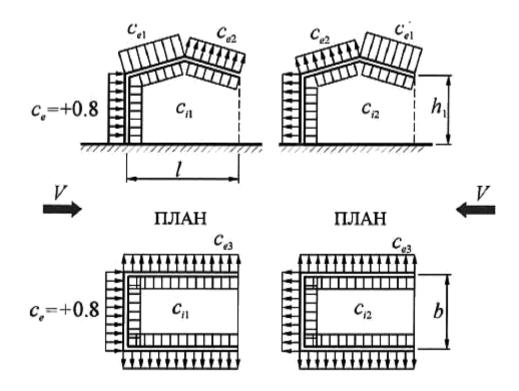


Рисунок В.10

Для участка M коэффициент c_{ϱ} =0,8.

Для участка K коэффициент c_{g} следует принимать в соответствии с <u>таблицей В.2</u>.


Для участка L коэффициент $\mathcal{C}_{\mathfrak{g}}$ следует определять линейной интерполяцией.

Для остальных вертикальных поверхностей коэффициент Св необходимо определять в соответствии с таблицей В.2.

Для покрытия зданий коэффициенты c_g определяются в соответствии с <u>таблицами В.3,а</u> и <u>В.3,6</u>.

В.1.9 Учет внутреннего давления*

^{*} Измененная редакция, <u>Изм. N 3</u>.

Рисунок В.11

При проницаемости ограждения $\mu \le 5\%$ $c_{i1} = c_{i2} = \pm 0.2$. Для каждой стены здания знак "плюс" или "минус" следует выбирать из условия реализации наиболее неблагоприятного варианта нагружения.

При $\mu \ge 30\%$ $c_{i1} = -0.5$; $c_{i2} = 0.8$.

Аэродинамические коэффициенты для внешней поверхности следует принимать в соответствии с В.1.2-В.1.7.

Примечание - Проницаемость ограждения µследует определять как отношение суммарной площади имеющихся в нем проемов к полной площади ограждения.

В.1.10 Навесы

Аэродинамические коэффициенты *с*_рдля четырех типов навесов (<u>рисунок В.12</u>) без сплошностенчатых вертикальных ограждающих конструкций определяются по таблице В.4.

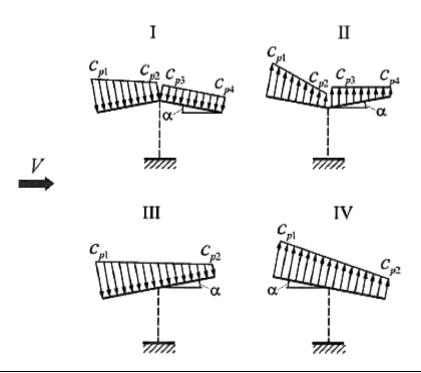


Рисунок В.12

Таблица В.4

Тип схемы	α, град.	Значения коэффициентов					
		c_{p1}	c_{p2}	c _{p3}	c _{p4}		
I	10	0,5	-1,3	-1,1	0		
	20	1,1	0	0	-0,4		
	30	2,1	0,9	0,6	0		
II	10	0	-1,1	-1,5	0		
	20	1,5	0,5	0	0		
	30	2	0,8	0,4	0,4		
III	10	1,4	0,4	-	-		
	20	1,8	0,5	-	-		
	30	2,2	0,6	-	-		
IV	10	1,3	0,2	-	-		
	20	1,4	0,3	-	-		
	30	1,6	0,4	-	-		

Примечания

1 Коэффициенты c_{p1} , c_{p2} , c_{p3} , c_{p4} соответствуют суммарному давлению на верхнюю и нижнюю поверхности навесов.

Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (новая редакция) ИС «Кодекс: 6 поколение» Интранет

- 2 Для отрицательных значений c_{p1} , c_{p2} , c_{p3} , c_{p4} направление давления на схемах следует изменять на противоположное.
- 3 Для навесов с волнистыми покрытиями аэродинамический коэффициент трения $\,{}^{c}f$ =0,04.
- 4 Для горизонтально расположенных навесов необходимо рассмотреть два варианта нагружения, соответствующие схемам III и IV при сс=10°.

В.1.11 Сфера

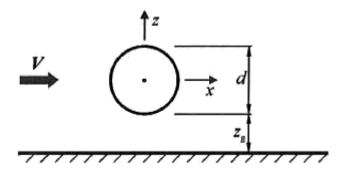


Рисунок В.13

Аэродинамические коэффициенты лобового сопротивления c_x сферы при $z_g > d/2$ (рисунок В.13) приведены на рисунке В.14 в зависимости от числа Рейнольдса Re и относительной шероховатости $\delta = \Delta/d$, где Δ , м, - шероховатость поверхности (см. В.1.16). При $z_g < d/2$ коэффициент c_x следует увеличить в 1,6 раза.

Коэффициент подъемной силы сферы $\,c_z\,$ принимается равным:

при
$$z_g > d/2$$
- $c_z = 0$;

при
$$z_g < d/2$$
- $c_z = 0,6$.

Эквивалентная высота (см. 11.1.5) $z_g = z_g + d/2$.

При определении коэффициента *v* в соответствии с 11.1.11 следует принимать

Число Рейнольдса *Re* определяется по формуле

$$Re = 0.88d \sqrt{\nu_0 k(z_e) \gamma_f} \cdot 10^5, \tag{B.1}$$

где *d*, м - диаметр сферы;

ਅ_ਰ , Па - определяется в соответствии с <u>11.1.4;</u>

 \mathcal{Z}_{g} , м - эквивалентная высота;

 $k(z_{g})$ - определяется в соответствии с 11.1.6;

 γ_f - коэффициент надежности по нагрузке (см. преамбулу к разделу 11).

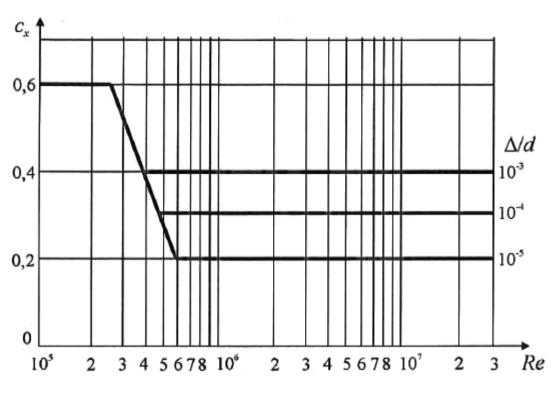


Рисунок В.14

В.1.11 (Измененная редакция, <u>Изм. N 3</u>).

В.1.12 Сооружения и конструктивные элементы с круговой цилиндрической поверхностью

Аэродинамический коэффициент $\mathcal{C}_{\mathfrak{g}}$ 1внешнего давления определяется по формуле

$$c_{e1} = k_{\lambda 1} c_{\beta}, \tag{B.2}$$

где $k_{\lambda 1}$ =1 при c_{β} >0; для c_{β} < $0-k_{\lambda 1}=k_{\lambda}$, определено в <u>В.1.15</u>.

Распределение коэффициентов c_{β} по поверхности цилиндра при $\delta = \Delta / d < 5 \cdot 10^{-4}$ (см. <u>В.1.16</u>) приведено на <u>рисунке В.16</u> для различных чисел Рейнольдса *Re.* Значения указанных на этом рисунке углов β_{\min} и β_{δ} , а также соответствующие им значения коэффициентов c_{\min} и c_{δ} приведены в <u>таблице В.5</u>. Значения аэродинамических коэффициентов давления $c_{\mathfrak{g}2}$ и c_i (рисунок В.15) приведены в <u>таблице В.6</u>. Коэффициент c_i следует учитывать для опущенного покрытия ("плавающая кровля"), а также при отсутствии покрытия.

Аэродинамические коэффициенты лобового сопротивления c_x определяются по формуле

$$c_x = k_{\lambda} c_{x\infty}, \tag{B.3}$$

где k_{λ} - определено в <u>В.1</u> в зависимости от относительного удлинения сооружения (см. <u>В.1.15</u>). Значения коэффициентов $c_{\chi_{00}}$ приведены на <u>рисунке В.17</u> в зависимости от числа Рейнольдса Re и относительной шероховатости $\delta = \Delta / d$ (см. <u>В.1.16</u>); для цилиндрических сооружений с ребрами Δ - высота ребра.

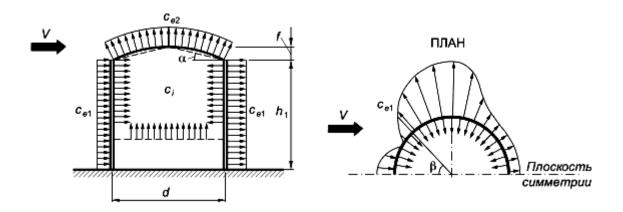


Рисунок В.15*

^{*} Измененная редакция, <u>Изм. N 5</u>.

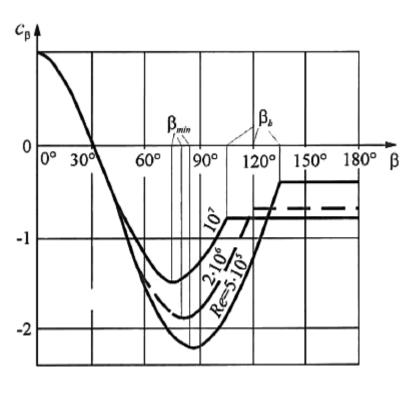
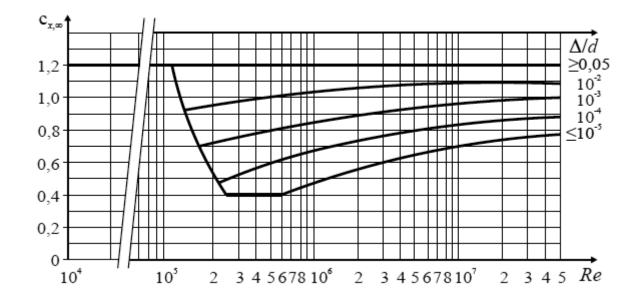


Рисунок В.16

Таблица В.5


Re	β_{min}	^C min	β	c_b
5·10 ⁵	85	-2,2	135	-0,4
2·10 ⁶	80	-1,9	120	-0,7

	107	75	-1,5	105	-0,8
--	-----	----	------	-----	------

Таблица В.6

h_1 / d	1/6	1/4	1/2	1	2	≥5
c_{e2}, c_i	-0,5	-0,55	-0,7	-0,8	-0,9	-1,05

Таблица В.6 (Измененная редакция, <u>Изм. N 5</u>).

Для проводов и тросов (в том числе покрытых гололедом) $c_x = 1,2$.

Аэродинамические коэффициенты лобового сопротивления наклонных элементов (рисунок В.18) определяются по формуле

$$c_{x\beta} = c_x \sin^2 \beta, \tag{B.4}$$

где c_x - определяется в соответствии с данными <u>B.1.12</u>, <u>B.1.13</u> и <u>B.1.14</u>;

 β - угол между осью элемента и скоростью ветра V, направленной вдоль оси x.

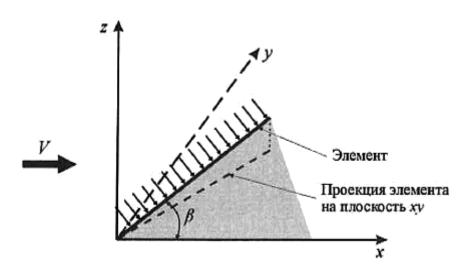


Рисунок В.18

При определении коэффициента v в соответствии с $\underline{11.1.11}$:

$$b = 0.7d$$
; $h = h_1 + 0.7f$.

Число Рейнольдса *Re* определяется по формуле, приведенной в В.1.11,

где Z_{g} =0,8h для вертикально расположенных сооружений;

^{*} Измененная редакция, <u>Изм. N 3</u>.

 \mathcal{Z}_{g} равно расстоянию от поверхности земли до оси горизонтально расположенного сооружения.

В.1.13 Призматические сооружения и конструктивные элементы

Аэродинамические коэффициенты лобового сопротивления призматических сооружений определяются по формуле

$$c_x = k_h c_{xxx}, \tag{B.5}$$

где k_{λ} определено в <u>В.1.15</u> в зависимости от относительного удлинения сооружения λ_{a} .

Значения коэффициента $c_{x\infty}$ для прямоугольных сечений приведены на <u>рисунке В.19</u>, а для *n*-угольных сечений и конструктивных элементов (профилей) - в таблице В.7.

Аэродинамические коэффициенты лобового сопротивления для конструкционных профилей принимаются равными 1,4 ($c_x = 1,4$).

Таблица В.7

Эскизы сечений и направлений ветра	β, град.	<i>n</i> (число сторон)	с _{хоо} при <i>Re</i> >4·10 ⁵
Правильный многоугольник	Произвольный	5	1,8
β d x		6-8	1,5
		10	1,2
		12	1,0

Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (новая редакция)
ИС «Кодекс: 6 поколение» Интранет

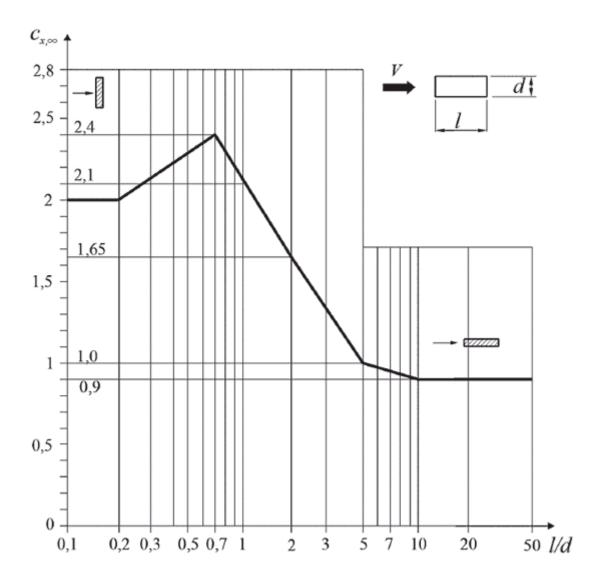
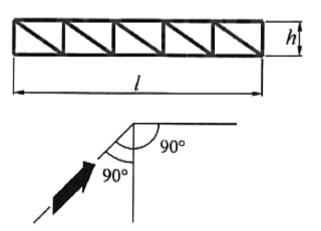


Рисунок В.19*

В.1.14 Решетчатые конструкции

Аэродинамические коэффициенты решетчатых конструкций отнесены к площади граней пространственных ферм или площади контура плоских ферм.

Направление оси *х* для плоских ферм совпадает с направлением ветра и перпендикулярно плоскости конструкции; для пространственных ферм расчетные направления ветра показаны в таблице B.8.


Аэродинамические коэффициенты c_x отдельно стоящих плоских решетчатых конструкций определяются по формуле

$$c_{x} = \frac{1}{A_{i}} \sum c_{xi} A_{i}, \tag{B.6}$$

где c_{xi} - аэродинамический коэффициент i-го элемента конструкции, принимаемый равным 1,4 (c_{xi} =1,4) для профилей и определяемый в соответствии с указаниями В.1.12 и В.1.13 для элементов с круглым и прямоугольным поперечными сечениями, соответственно; при этом k_{λ} =1;

 A_{i} - площадь проекции *i*-го элемента конструкции;

 A_{k} - площадь, ограниченная контуром конструкции.

^{*} Измененная редакция, <u>Изм. N 2</u>.

Рисунок В.20

Ряд плоских параллельно расположенных решетчатых конструкций

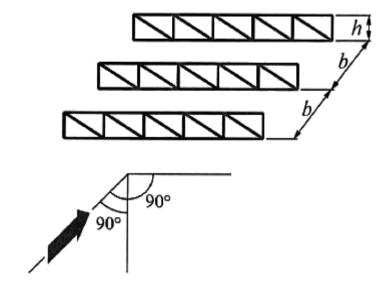


Рисунок В.21

Для наветренной конструкции коэффициент c_{x1} определяется так же, как и для отдельно стоящей фермы.

Для второй и последующих конструкций $c_{x2} = c_{x1} \eta$.

Для ферм из труб при $Re<4\cdot10^5$ и ферм из профилей коэффициент η определяется по таблице B.8 в зависимости от относительного расстояния между фермами b/h (рисунок B.19) и коэффициента заполнения ферм $\phi=\frac{1}{A_k}\sum A_i$.

Таблица В.8

φ	b/h							
	1/2	1	2	4	6			
0,1	0,93	0,99	1	1	1			
0,2	0,75	0,81	0,87	0,9	0,93			
0,3	0,56	0,65	0,73	0,78	0,83			
0,4	0,38	0,48	0,59	0,65	0,72			
0,5	0,19	0,32	0,44	0,52	0,61			
≥0,6	0	0,15	0,3	0,4	0,5			

Для ферм из труб при $Re \ge 4.10^5$ коэффициент $\eta = 0.95$.

Примечание - Число Рейнольдса *Re* следует определять по формуле в <u>B.1.11</u>, где *d* - средний диаметр трубчатых элементов.

Решетчатые башни и пространственные фермы

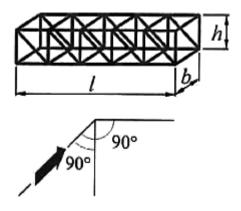


Рисунок В.22

Аэродинамические коэффициенты C_f решетчатых башен и пространственных ферм определяются по формуле

 $c_t = c_x (1 + \eta) k_1,$ (B.7)

где c_{χ} - определяется так же, как и для отдельно стоящей фермы;

η - определяется так же, как и для ряда плоских ферм.

Значения коэффициента k_1 приведены в <u>таблице В.9</u>.

Таблица В.9

Форма контура поперечного сечения и направление ветра	k_1
	1
	0,9
→ 〈 >	1,2

В.1.14 (Измененная редакция, <u>Изм. N 3</u>, <u>5</u>).

В.1.15 Учет относительного удлинения

Значения коэффициента k_{λ} в зависимости от относительного удлинения λ_{e} элемента или сооружения приведены на <u>рисунке В.23</u>. Относительное удлинение λ_{e} зависит от параметра $\lambda_{e} = l/b$ и определяется по <u>таблице В.10</u>; степень заполнения $\phi = \frac{1}{A_{k}} \sum A_{l}$.

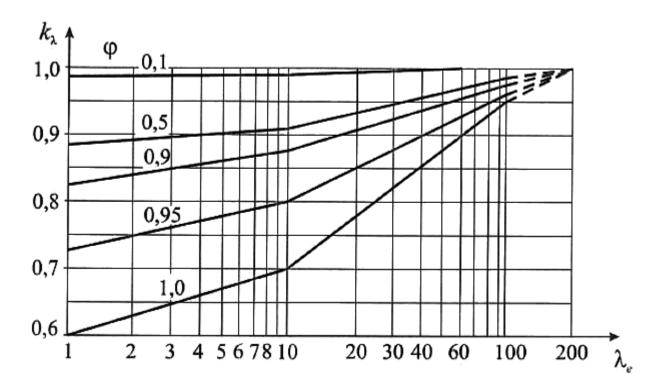
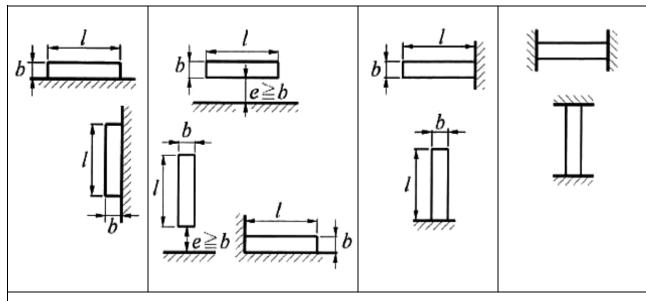



Рисунок В.23

Таблица В.10

Примечание - l, b - соответственно максимальный и минимальный размеры сооружения или его элемента плоскости, перпендикулярной направлению ветра.

В.1.16 Учет шероховатости внешней поверхности

Шероховатость ∆ поверхностей конструкций в зависимости от их обработки и материала, из которого они изготовлены, приведена в таблице В.11.

Таблица В.11

Тип поверхности	Шероховатость Δ , м	Тип поверхности	Шероховатость Δ , м
Стекло	1,5·10 ^{−6}	Оцинкованная сталь	2·10 ⁻⁴
Полированный металл	2·10-6	Шлифованный бетон	2·10 ⁻⁴
Тонкомолотая масляная	6.10-6	Шероховатый бетон	10 -3

Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (новая редакция) ИС «Кодекс: 6 поколение» Интранет

краска			
Распыленная краска	2·10-5	Ржавчина	2·10 ⁻³
Литейный чугун	2·10 ⁻⁴	Каменная, кирпичная кладка	3·10 ⁻³

В.1.16 (Измененная редакция, Изм. N 3).

В.1.17 Пиковые значения аэродинамических коэффициентов для прямоугольных в плане зданий

- а) Для стен прямоугольных в плане зданий пиковое положительное значение аэродинамического коэффициента $^{\mathcal{C}}_{p}$, + =1,2.
- б) Пиковые значения отрицательного аэродинамического коэффициента $^{\mathcal{C}}_{\mathcal{P},-}$ для стен и плоских покрытий (рисунок В.24) приведены в таблице В.12.

Таблица В.12

Участок	А	В	С	D	E
с _{р,-}	-2,2	-1,2	-3,4	-2,4	-1,5

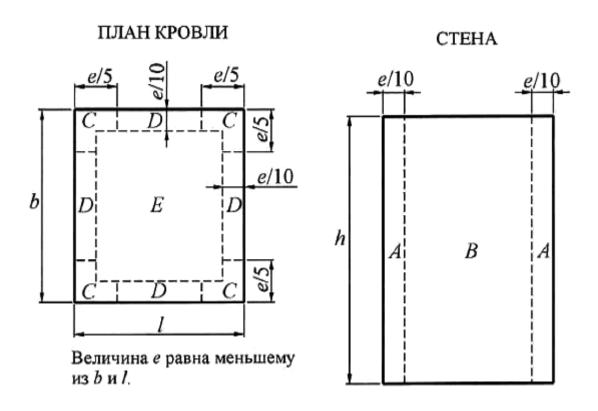


Рисунок В.24

В.2 Резонансное вихревое возбуждение

В.2.1 Для однопролетных сооружений и конструктивных элементов интенсивность воздействия *F*(*z*), действующего при резонансном вихревом возбуждении по *i-*й собственной форме в направлении, перпендикулярном средней скорости ветра, определяется по формуле

$$F_i(z) = 0.61\pi V_{cr,i}^2 c_{y,cr} \varphi_i(z) d/\delta_s$$
, H/M, (B.8)

где d, м, - размер сооружения или конструктивного элемента в направлении, перпендикулярном средней скорости ветра;

$$V_{cr,i}$$
 , M/c, - cm. 11.3.2;

 $c_{y,cr}$ - аэродинамический коэффициент поперечной силы при резонансном вихревом возбуждении;

 δ_s - логарифмический декремент конструкционного демпфирования принимаемый равным:

 δ_s =0,05 - для металлических сооружений; δ_s =0,1 - для железобетонных сооружений;

z - координата, изменяющаяся вдоль оси сооружения;

 $\phi_i(z)$ - *i*-я форма собственных колебаний в поперечном направлении, удовлетворяющая условию

$$\max \left[\varphi(z) \right] = 1. \tag{B.9}$$

Примечание - В тех случаях, когда используются различные типы демпфирующих устройств (гасители колебаний), значение суммарного логарифмического декремента конструкционного демпфирования δ_s устанавливается в рамках научно-технического сопровождения проектирования.

Для высотных зданий воздействие, возникающее при резонансном вихревом возбуждении, необходимо устанавливать на основе данных их модельных испытаний в аэродинамических трубах.

(Измененная редакция, <u>Изм. N 1</u>).

- В.2.2 Аэродинамические коэффициенты Супоперечной силы определяются следующим образом:
- а) Для круглых поперечных сечений C y = 0,3.
- б) Для прямоугольных поперечных сечений при b/d>0,5:

$$c_y = 1.1_{\rm ДЛЯ} \ V_{cr,i} / V_{{
m max}(z_{{
m sx}})} < 0.8;$$

$$c_y = 0.6\,_{\rm ДЛЯ}~V_{cr,\,i}\,/V_{{\rm max}\,(z_{\rm MK})} \geq 0.8\,_{\rm c}$$

здесь b - размер сооружения в направлении средней скорости ветра.

При $b/a \le 0,5$ расчет на резонансное вихревое возбуждение допускается не проводить.

В.2.3 При расчете сооружения на резонансное вихревое возбуждение наряду с воздействием (В.2.1) необходимо учитывать также действие ветровой нагрузки,

параллельной средней скорости ветра. Средняя $w_{m,cr}$ и пульсационная $w_{g,cr}$ составляющие этого воздействия определяются по формулам:

$$w_{m,cr} = (V_{cr} / V_{\text{max}})^2 w_m; \ w_{g,cr} = (V_{cr} / V_{\text{max}})^2 w_g,$$
 (B.10)

где V_{\max} - расчетная скорость ветра на высоте $z_{3\kappa}$, на которой происходит резонансное вихревое возбуждение, определяемое по формуле (11.13);

 w_m и w_g - расчетные значения средней и пульсационной составляющих ветровой нагрузки, определяемые в соответствии с указаниями 11.1.

(Измененная редакция, Изм. N 2).

В.2.4 Критические скорости $V_{cr,i}$ могут иметь достаточно большую повторяемость в течение расчетного срока эксплуатации сооружения, и в связи с этим резонансное вихревое возбуждение может привести к накоплению усталостных повреждений.

Для предотвращения резонансного вихревого возбуждения могут быть использованы различные конструктивные мероприятия: установка вертикальных и спиралевидных ребер, перфорация ограждения и установка соответствующим образом настроенных гасителей колебаний.

В.3 Динамическая комфортность

При оценке комфортности пребывания людей в зданиях (динамическая комфортность) расчетные значения ветровой нагрузки w_c принимаются равными

$$w_c = 0.7 w_g, \tag{B.11}$$

где \mathcal{W}_g - нормативное значение пульсационной составляющей основной ветровой нагрузки (см. 11.1.8).

При этом максимальное ускорение этажа здания не должно превышать величины:

а) для жилых зданий

$$a_{c,\text{max}} = 0.08 \text{ m/c}^2;$$
 (B.12a)

б) для общественных, административных и офисных зданий

$$a_{c,\text{max}} = 0.13 \text{ m/c}^2.$$
 (B.126)

Примечание - Методику оценки динамической комфортности допускается уточнять в зависимости от собственных частот колебаний здания.

(Измененная редакция, <u>Изм. N 2, 3</u>).

Приложение Г

Средняя многолетняя температура почвы на глубинах (по вытяжным термометрам), °С

Таблица Г.1

Субъект РФ	<i>t</i> , °C на глубине 0,8 м на г			<i>t</i> , °C на глубине 1,6 м		<i>t</i> , °C на глубине 3,2 м	
	$t_{ m max}$	t _{min}	$t_{ m max}$	$t_{ m min}$	$t_{ m max}$	$t_{ m min}$	
Алтайский край	18,1	-4,8	14,9	-1,3	10,8	2,5	
Амурская обл.	16,5	-8,0	13,3	-4,6	9,3	0,0	
Архангельская обл.	14,7	-2,6	13,0	-0,9	9,3	1,0	
Астраханская обл.	26,6	0,6	23,0	3,9	15,9	7,6	
Белгородская обл.	17,8	0,8	14,6	3,2	12,0	5,4	
Брянская обл.	16,5	1,2	14,3	2,8	11,1	4,8	
Владимирская обл.	16,0	1,0	13,9	2,1	11,4	3,7	
Волгоградская обл.	24,0	0,2	21,5	1,8	18,4	4,4	
Вологодская обл.	14,0	0,9	12,4	1,7	9,5	3,2	
Воронежская обл.	16,8	1,1	13,9	3,1	11,1	5,3	
Еврейская а.о.	18,9	-3,1	15,5	0,0	11,0	1,9	
Забайкальский край	14,7	-14,3	10,7	-8,3	6,6	-2,3	

Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (новая редакция) ИС «Кодекс: 6 поколение» Интранет

Ивановская обл.	14,7	1,0	13,1	2,2	9,9	3,9
Иркутская обл.	17,0	-8,4	14,9	-4,1	10,8	-1,0
Кабардино-Балкарская Респ.	21,0	2,9	18,1	5,8	14,9	9,1
Калининградская обл.	16,3	2,9	13,9	4,4	11,1	6,3
Калужская обл.	15,5	0,7	13,9	1,9	11,8	3,3
Камчатский край	14,1	-0,8	14,5	0,5	16,7	1,3
Карачаево-Черкесская Респ.	15,4	0,0	13,5	3,4	11,2	5,8
Кемеровская обл.	14,9	-2,0	12,2	0,2	8,8	2,4
Кировская обл.	15,5	0,7	13,8	1,9	9,2	3,9
Костромская обл.	15,3	0,9	13,2	2,0	10,4	3,6
Краснодарский край	22,9	3,5	20,7	6,4	18,4	9,1
Красноярский край	17,1	-6,6	13,8	-1,5	9,7	0,2
Курганская обл.	17,7	-2,5	14,7	-0,1	11,2	2,3
Курская обл.	17,4	0,7	14,9	2,4	11,5	4,8
Ленинградская обл.	15,5	0,6	13,8	1,6	11,4	3,0
Липецкая обл.	17,3	0,7	15,3	1,9	12,3	4,1
Магаданская обл.	9,6	-14,6	6,8	-3,8	2,6	-0,8
Московская обл.	15,4	0,6	13,3	1,8	11,2	3,8
Мурманская обл.	12,6	-2,5	10,5	0,2	7,6	1,0
Ненецкий а.о.	10,5	-3,9	8,6	-0,6	5,5	0,1

Нижегородская обл.	16,7	0,1	14,9	1,6	12,2	3,9
Новгородская обл.	14,6	1,1	12,6	2,3	10,5	3,7
Новосибирская обл.	15,1	-2,3	12,4	0,3	8,0	2,7
Омская обл.	15,0	-2,2	12,7	0,4	9,2	2,3
Оренбургская обл.	20,2	-1,5	17,6	1,3	13,5	3,9
Орловская обл.	16,6	0,9	14,4	2,6	11,2	4,8
Пензенская обл.	16,2	0,6	13,6	2,4	11,4	4,1
Пермский край	15,7	0,1	13,7	1,3	10,5	2,4
Приморский край	19,3	-2,8	15,9	0,1	12,0	2,9
Псковская обл.	17,1	0,8	14,7	2,4	11,6	4,0
Респ. Адыгея (Адыгея)	21,9	4,5	20,0	6,7	17,2	10,2
Респ. Алтай	15,2	-8,9	12,3	-7,7	9,8	-3,5
Респ. Башкортостан	15,4	0,0	13,0	1,7	9,9	3,6
Респ. Бурятия	16,9	-14,2	13,3	-10,3	9,2	-0,1
Респ. Дагестан	25,2	3,5	22,1	6,1	18,6	8,7
Респ. Калмыкия	23,6	0,7	20,4	4,1	16,2	8,3
Респ. Карелия	17,1	0,0	14,5	1,0	10,7	2,5
Респ. Коми	14,6	-2,3	12,3	-0,2	10,7	0,1
Респ. Марий Эл	15,7	0,5	13,1	2,1	10,4	3,7
Респ. Саха (Якутия)	15,0	-18,9	11,5	-16,2	6,8	-12,6

Респ. Северная Осетия - Алания	23,8	2,8	21,1	5,4	16,0	11,2
Респ. Татарстан	15,7	0,2	13,0	1,7	9,5	3,9
Респ. Тыва	14,5	-10,9	10,9	-5,9	7,3	-1,8
Респ. Хакасия	14,3	-6,6	11,1	-2,6	8,0	0,8
Ростовская обл.	22,8	0,9	18,6	3,6	15,8	6,0
Рязанская обл.	17,5	0,8	15,9	1,9	13,0	3,7
Самарская обл.	18,3	-1,2	15,0	1,1	11,9	3,3
Саратовская обл.	20,1	-1,2	17,3	1,0	13,1	3,9
Сахалинская обл.	14,5	-1,1	12,2	0,4	9,3	3,0
Свердловская обл.	16,8	-2,2	13,9	0,2	10,6	1,6
Смоленская обл.	15,3	1,4	13,1	2,8	10,9	4,5
Ставропольский край	23,8	3,0	20,7	4,8	17,1	8,2
Таймырский (Долгано-Ненецкий) м.р.	2,4	-22,6	-0,4	-4,7	-1,6	-3,1
Тамбовская обл.	17,4	1,1	15,4	2,5	12,3	4,5
Тверская обл.	18,0	0,9	15,7	1,9	12,3	3,4
Томская обл.	16,5	-1,5	13,5	0,6	10,0	2,3
Тульская обл.	15,9	0,8	13,5	2,5	11,2	4,2
Тюменская обл.	15,2	-0,9	13,1	0,4	9,0	2,5
Удмуртская Респ.	16,0	0,4	13,4	1,5	9,8	3,5
Ульяновская обл.	15,3	0,8	12,9	2,4	10,0	4,6

Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (новая редакция) ИС «Кодекс: 6 поколение» Интранет

Хабаровский край	18,9	-10,4	15,5	-6,4	11,8	-1,6
Ханты-Мансийский а.о.	16,0	-1,8	12,9	0,1	9,3	1,5
Челябинская обл.	15,2	-1,4	12,5	0,6	9,6	2,9
Чеченская Респ.	23,2	3,2	20,0	6,3	16,8	10,1
Чувашская Респ.	15,6	0,1	13,0	1,9	9,4	3,9
Чукотский а.о.	10,0	-14,0	7,4	-12,2	4,7	-10,0
Эвенкийский а.о.	12,8	-7,6	10,3	-2,9	6,3	-1,2
Ямало-Ненецкий а.о.	12,5	-3,2	10,2	-1,5	6,8	1,3
Ярославская обл.	15,2	1,0	13,2	2,2	10,4	3,8

Приложение Д

Прогибы и перемещения

Д.1 Определение прогибов и перемещений

Д.1.1 При определении прогибов и перемещений следует учитывать все основные факторы, влияющие на их значения (неупругие деформации материалов, образование трещин, учет деформированной схемы, учет смежных элементов, податливость узлов сопряжения и оснований). При достаточном обосновании отдельные факторы можно не учитывать или учитывать приближенным способом.

При учете ветровых нагрузок перемещения несущих конструкций определяются от действия ее средней составляющей. При этом действия ее пиковой и пульсационной составляющих не учитываются.

(Измененная редакция, Изм. N 3).

- Д.1.2 Для конструкций из материалов, обладающих ползучестью, необходимо учитывать увеличение прогибов во времени. При ограничении прогибов исходя из физиологических требований следует учитывать только кратковременную ползучесть, проявляемую сразу после приложения нагрузки, а исходя из технологических и конструктивных (за исключением расчета с учетом ветровой нагрузки) и эстетико-психологических требований полную ползучесть.
 - Д.1.3 При определении прогибов колонн одноэтажных зданий и эстакад от горизонтальных крановых нагрузок расчетную схему колонн следует принимать с

учетом условий их закрепления, считая, что колонна:

- а) в зданиях и крытых эстакадах не имеет горизонтального смещения на уровне верхней опоры (если покрытие не создает жесткого в горизонтальной плоскости диска, следует учитывать горизонтальную податливость этой опоры);
 - б) в открытых эстакадах рассматривается как консоль.
- Д.1.4 При колебаниях строительных конструкций зданий и сооружений классификацию вибраций, нормируемые параметры, их предельно допустимые значения в жилых, общественных и производственных зданиях необходимо устанавливать согласно требованиям соответствующих действующих нормативных документов.

При наличии высокоточного оборудования и приборов, чувствительных к колебаниям конструкций, на которых они установлены, предельные значения виброперемещений, виброскорости, виброускорения следует определять в соответствии с заданием на проектирование.

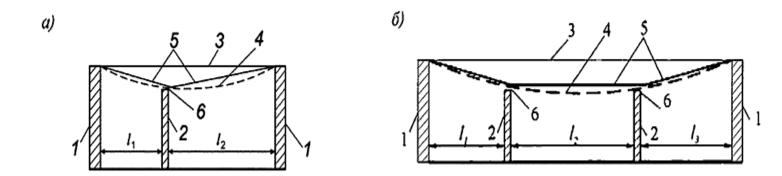
Д.1.5 Расчетные ситуации, для которых необходимо определять прогибы и перемещения и соответствующие им нагрузки, следует принимать в зависимости от того, исходя из каких требований производится расчет.

Расчетная ситуация характеризуется расчетной схемой конструкции, видами нагрузок, значениями коэффициентов условий работы и коэффициентов надежности, перечнем предельных состояний, которые следует рассматривать в данной ситуации.

Если расчет производится исходя из технологических требований, расчетная ситуация должна соответствовать действию нагрузок, влияющих на работу технологического оборудования.

Если расчет производится исходя из конструктивных требований, расчетная ситуация должна соответствовать действию нагрузок, которые могут привести к повреждению смежных элементов в результате значительных прогибов и перемещений.

Если расчет производится исходя из физиологических требований, расчетная ситуация должна соответствовать состоянию, связанному с колебаниями конструкций, и при этом необходимо учитывать нагрузки, влияющие на колебания конструкций, ограничиваемые требованиями настоящего свода правил.


Если расчет производится исходя из эстетико-психологических требований, расчетная ситуация должна соответствовать действию постоянных и длительных нагрузок.

Для конструкций покрытий и перекрытий, проектируемых со строительным подъемом при ограничении прогиба эстетико-психологическими требованиями, определяемый вертикальный прогиб следует уменьшать на размер строительного подъема.

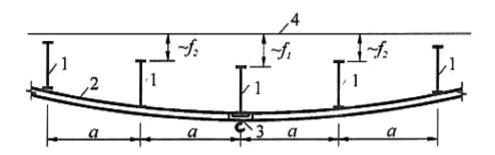
Д.1.6 Прогиб элементов покрытий и перекрытий, ограниченный исходя из конструктивных требований, не должен превышать расстояния (зазора) между нижней поверхностью этих элементов и верхом перегородок, витражей, оконных и дверных коробок и других конструктивных элементов, расположенных под несущими элементами.

(Измененная редакция, <u>Изм. N 3</u>).

Д.1.7 При наличии между стенами капитальных перегородок (практически такой же высоты, как и стены) значения ∤в поз.2,а таблицы Д.1 следует принимать равными расстояниям между внутренними поверхностями несущих стен (или колонн) и этими перегородками (или между внутренними поверхностями перегородок, рисунок Д.1).

а) - одной в пролете; б) - двух в пролете; 1 - несущие стены (или колонны); 2 - капитальные перегородки; 3 - перекрытие (покрытие) до приложения нагрузки; 4 - перекрытие (покрытие) после приложения нагрузки; 5 - линии отсчета прогибов; 6 - зазор

Рисунок Д.1* - Схемы для определения значений $l(l_1, l_2, l_3)$ при наличии между стенами капитальных перегородок


Д.1.8 Прогибы стропильных конструкций при наличии подвесных крановых путей (см. $\underline{\text{таблицу Д.1}}$, позиция 2, перечисление б) следует принимать как разность между прогибами f_1 и f_2 смежных стропильных конструкций ($\underline{\text{рисунок Д.2}}$).

(Измененная редакция, <u>Изм. N 3, 6</u>).

Д.1.9 Горизонтальные перемещения каркаса следует определять в плоскости стен и перегородок, целостность которых должна быть обеспечена.

(Измененная редакция, <u>Изм. N 3</u>).

^{*} Измененная редакция, <u>Изм. N 5</u>.

1 - стропильные конструкции; 2 - балка подвесного кранового пути; 3 - подвесной кран; 4 - исходное положение стропильных конструкций; f_1 - прогиб наиболее нагруженной стропильных конструкций

Рисунок Д.2 - Схема для определения прогибов стропильных конструкций при наличии подвесных крановых путей Рисунок Д.3 (Исключен, <u>Изм. N 3</u>).

Д.2 Предельные прогибы

Д.2.1 Вертикальные предельные прогибы элементов конструкций

Вертикальные предельные прогибы элементов конструкций и нагрузки, от которых следует определять прогибы, приведены в таблице Д.1.

Таблица Д.1

Элементы конструкций	Предъявляемые требования	Вертикальные предельные прогибы f_u	Нагрузки для определения вертикальных прогибов
1 Балки крановых путей подмостовые и подвесные краны, управляемые из кабины при группах режимов работы:	Физиологические		
1K-6K		// 400	От одного крана
7K		/ /500	То же

8K		/ /600	п
2 Балки, фермы, ригели, прогоны, плиты, настилы (включая поперечные ребра плит и настилов):			
а) покрытий и перекрытий, открытых для обзора, при пролете <i>I</i> , м:			Постоянные и длительные, а также нагрузки, указанные в таблице 8.3, с
ı≤1	Эстетико- психологические	/ 120	понижающим коэффициентом, равным
⊭ 3		/ /150	0,35, и снеговые нагрузки с понижающим
⊭ 6		// 200	коэффициентом, равным 0,5
<i>⊨</i> 24 (12)		// 250	
1≥36 (24)		/ /300	
б) покрытий и перекрытий при наличии тельферов (талей), подвесных кранов, управляемых из кабины	Физиологические	#400 или а/200 (меньшее из двух)	От одного крана или тельфера (тали) на одном пути
в) перекрытий, подверженных действию:	Физиологические		Наиболее неблагоприятное из следующих двух значений:
перемещаемых грузов, материалов, узлов и элементов оборудования и других подвижных нагрузок (в том числе при безрельсовом напольном транспорте)		∦ 350	0,7 полных нормативных значений кратковременных нагрузок на перекрытие или нагрузки от одного транспортного средства
нагрузок от рельсового транспорта:			

узкоколейного		<i>l</i> /400	От одного состава вагонов (или одной напольной машины) на одном пути
ширококолейного		<i>l</i> /500	То же
г) покрытий и перекрытий автостоянок в зданиях, при пролете <i>I</i> , м:			Постоянные и длительные, а также нагрузки, указанные в таблице 8.3 с
<i>⊨</i> 6	Физиологические	//200	понижающим коэффициентом, равным
<i>⊨</i> 12		// 250	0,35, и снеговые нагрузки с понижающим
1≥24		//300	коэффициентом, равным 0,5
3 Элементы лестниц (марши, площадки, косоуры), балконов,	Эстетико- психологические	Те же, что в позици	ии 2, перечисление а)
лоджий	Физиологические	Определяются в соответствии с Д.2.2	
4 Перемычки и навесные стеновые панели над оконными и дверными проемами (ригели и прогоны остекления)	Эстетико- психологические	Те же, что в позиции 2, перечисление а)	

Обозначения, принятые в настоящей таблице:

I - расчетный пролет элемента конструкции;

а - шаг балок или ферм, к которым крепятся подвесные крановые пути.

Примечания

1 За расчетный пролет l элемента конструкции принимается расстояние между точками опирания элемента, назначаемое при расчетах конструкций.

Для консоли вместо $\it l$ следует принимать удвоенный ее вылет.

Для безбалочного железобетонного перекрытия за пролет / следует принимать:

- а) в монолитной конструкции расстояние между осями колонн;
- б) в сборной конструкции:
- для ригелей рам расстояние между осями колонн;
- для квадратных в плане пролетных плит размер диагонали плиты;
- для прямоугольных в плане пролетных плит с отношением сторон более 1,5:1 размер большей стороны плиты.
- 2 Для промежуточных значений / в позиции 2, перечисление а), предельные прогибы следует определять линейной интерполяцией, учитывая требования <u>Д.1.7 приложения Д.</u>
- 3 В позиции 2, перечисление а), цифры, указанные в скобках, следует принимать при высоте помещений до 6 м включительно.
- 4 Особенности вычисления прогибов по позиции 2, перечисление б), указаны в Д.1.8 приложения Д.
- 5 При ограничении прогибов эстетико-психологическими требованиями допускается пролет / принимать равным расстоянию между внутренними поверхностями несущих стен (или колонн).

(Измененная редакция, Изм. N 3, 5).

Д.2.2 Физиологические требования*

Предельные прогибы элементов перекрытий (балок, ригелей, плит), лестниц, балконов, лоджий, помещений жилых и общественных зданий, а также бытовых помещений производственных зданий исходя из физиологических требований (от людей, возбуждающих колебания) следует определять по формуле

$$f_u = \frac{g(p+p_1+q)}{30n^2(bp+p_1+q)},$$
 (Д.1)

где g - ускорение свободного падения;

p - нормативное значение нагрузки от людей, возбуждающих колебания, принимаемое по <u>таблице Д.2;</u>

^{*} Измененная редакция, <u>Изм. N 1</u>.

 p_1 - нагрузки на перекрытия, принимаемые по <u>таблице Д.2</u>;

q - нормативное значение нагрузки от веса рассчитываемого элемента и опирающихся на него конструкций;

n - частота приложения нагрузки при ходьбе человека, принимаемая по <u>таблице Д.2</u>;

b - коэффициент, принимаемый по <u>таблице Д.2</u>.

Таблица Д.2

Помещения, принимаемые по таблице 8.3	<i>р</i> , кПа	p_1 , кПа	<i>п</i> , Гц	ь
Позиции 1, 2, кроме классных и бытовых Позиции 3, 4, <i>a</i> , 9, <i>б</i> , 10, <i>б</i>	0,25	Принимают по таблице 8.3 с понижающим коэффициентом, равным 0,35	1,5	$125\sqrt{\frac{Q}{\alpha pal}}$
Позиция 2 - классные и бытовые Позиции 4, <i>б-е</i> , кроме танцевальных Позиции 9, <i>a</i> , 10, <i>a</i> , 12, 13	0,5	Принимают по таблице 8.3 с понижающим коэффициентом, равным 0,35	1,5	$125\sqrt{\frac{Q}{\alpha pal}}$

Обозначения, принятые в таблице Д.2:

Q - вес одного человека, принимаемый равным 0,8 кH;

∞- коэффициент, принимаемый равным 1,0 для элементов, рассчитываемых по балочной схеме,

0,5 - в остальных случаях (например, при опирании плит по трем или четырем сторонам);

 ${\it \alpha}$ - шаг балок, ригелей, ширина плит (настилов), м;

Į - расчетный пролет элемента конструкции, м.

Прогибы следует определять от суммы нагрузок $\phi_1 p + p_1 + q$, где ϕ_1 - коэффициент, определяемый по формуле (6.6).

Подраздел Д.2.2 (Измененная редакция, Изм. N 1, 3).

Д.2.3 Горизонтальные предельные прогибы колонн и тормозных конструкций от крановых нагрузок

Д.2.3.1 Горизонтальные предельные прогибы колонн зданий, оборудованных мостовыми кранами, крановых эстакад, а также балок крановых путей и тормозных конструкций (балок или ферм), следует принимать по <u>таблице Д.3</u>, но не менее 6 мм.

Прогибы следует проверять на отметке головки крановых рельсов от сил торможения тележки одного крана, направленных поперек кранового пути, без учета крена фундаментов.

Таблица Д.3

Группы режимов работы кранов	Предельные прогибы f_{u}					
	кол	балок крановых путей и тормозных конструкций, зданий и крановых эстакад (крытых и открытых)				
	зданий и крытых крановых эстакад	открытых крановых эстакад				
1K-3K	<i>h</i> /500	<i>h</i> /1500	<i>]</i> /500			
4K-6K	<i>h</i> /1000	<i>h</i> /2000	₹/1000			
7K-8K	<i>h</i> /2000	<i>h</i> /2500	1/2000			

Обозначения, принятые в <u>таблице Д.3</u> :

 h - высота от верха фундамента до головки кранового рельса (для одноэтажных зданий, крытых и открытых крановых эстакад) или расстояние от оси ригеля перекрытия до головки кранового рельса (для верхних этажей многоэтажных зданий);

] - расчетный пролет элемента конструкции (балки).

Д.2.3.2 (Исключен, <u>Изм. N 3</u>).

Д.2.4 Горизонтальные предельные перемещения и прогибы зданий, отдельных элементов конструкций от ветровой нагрузки и температурных климатических воздействий*

- * Измененная редакция, <u>Изм. N 3</u>.
- Д.2.4.1 (Измененная редакция, Изм. N 1), (Исключен, Изм. N 3).
- Д.2.4.2 Для 2-го предельного состояния горизонтальные перемещения бескаркасных зданий от ветровых нагрузок не ограничиваются.
- Д.2.4.3, Д.2.4.4 (Исключены, <u>Изм. N 3</u>).
- Д.2.4.5 Горизонтальные предельные прогибы колонн (стоек) каркасных зданий от температурных климатических и усадочных воздействий следует принимать равными:
 - $h_{\rm s}/150$ при стенах и перегородках из кирпича, гипсобетона, железобетона и навесных панелей;
- $h_s/200$ при стенах, облицованных естественным камнем, из керамических блоков, из стекла (витражи), где h_s высота этажа, а для одноэтажных зданий с мостовыми кранами высота от верха фундамента до низа балок кранового пути.

При этом температурные воздействия следует принимать без учета суточных колебаний температур наружного воздуха и перепада температур от солнечной радиации.

При определении горизонтальных прогибов от температурных климатических и усадочных воздействий их значения не следует суммировать с прогибами от ветровых нагрузок и от крена фундаментов.

Д.2.4.6 Горизонтальные предельные прогибы конструктивных элементов витражей, стеклопакетов, навесных фасадных систем и т.п. конструкций устанавливаются нормативными документами по их проектированию.

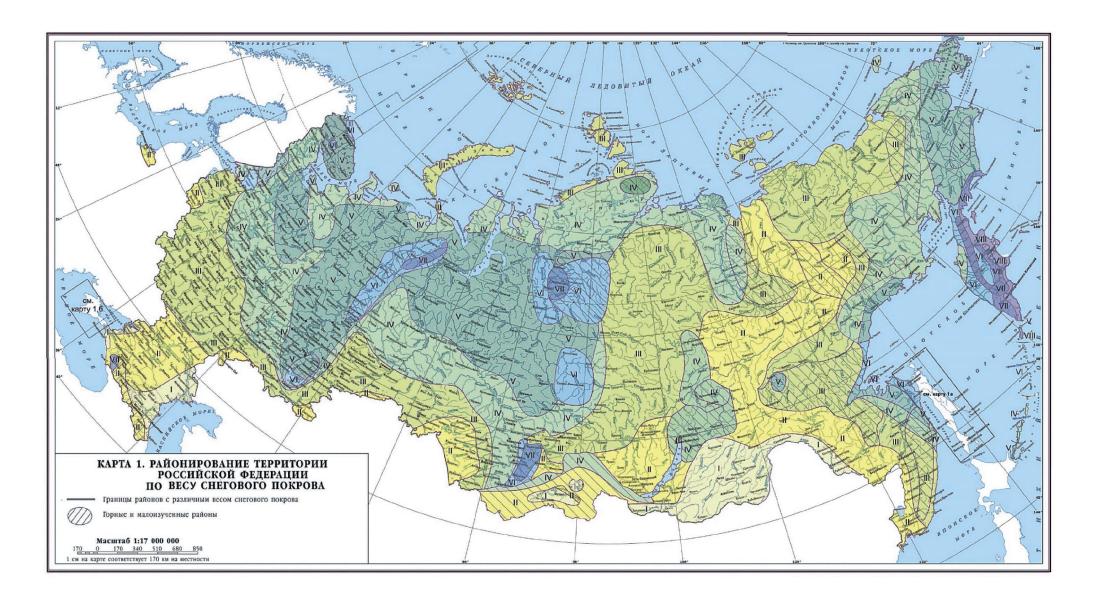
(Введен дополнительно, <u>Изм. N 1</u>), (Измененная редакция, <u>Изм. N 5</u>).

Д.2.5 (Исключен, <u>Изм. N 3</u>).

Приложение Е

Карты районирования территории Российской Федерации по климатическим характеристикам

(См. вкладки)


Таблица Е.1 - Высотный коэффициент k_h для пунктов, расположенных в горных районах, обозначенных на карте 1 приложения E, а также в местах со сложным изменением рельефа и высотой над уровнем моря более 500 м

Территориальный район Российской Федерации	Снеговой район	Начальная высота h_0 , м	k_h
Республика Дагестан	II	500	1,0
Краснодарский край:			
Адлерский район	VII	500	2,15
Остальные районы	II	500	5,0
Республика Адыгея (Адыгея)	VII	500	2,15
Ставропольский край	II	500	1,0
Эвенкийский автономный округ	VI	500	0,35
Красноярский край:			
Кемеровская область - Кузбасс, Кузнецкий Алатау, Горная Шория	VI, VII	500	2,25
Саянский хр., Куртушибинский хр.	IV	500	3,15
Северо-Енисейский район	VI	500	0,95
Норильский промышленный район:			
- к северо-востоку от г.Норильска	V	500	3,75
- до 20 км к югу от г.Норильска	VI	500	2,5
Республика Бурятия:			
хр. Хамар-Дабан	IV	500	1,0

Байкальский хр.	IV	500	2,3
Забайкальский край:			
Каларский район, хр.Удокан	II	1000	1,8
Республика Якутия:			
Алданское нагорье	III	500	1,35

Примечание - Значения высотного коэффициента k_h для остальных горных районов, а также для мест со сложным изменением рельефа и высотой над уровнем моря более 500 м необходимо устанавливать на основе данных организаций по гидрометеорологии.

Таблица Е.1 (Измененная редакция, <u>Изм. N 2, 3, 5</u>).

Оригинал Карты 1 см. по ссылке. - Примечание изготовителя базы данных.

Примечания

1 Для горных районов при высоте местности над уровнем моря $h \le 500$ м нормативное значение веса снегового покрова принимают равным S_g для соответствующего снегового района; при h > 500 м определяют по формуле

$$S_{\varphi}(h) = S_{\varphi}(1+0.001k_h(h-h_0))$$
, KH/M²,

где k_h - значение высотного коэффициента для высоты h, м над уровнем моря;

 h_0 - начальная высота, м, относительно которой устанавливается высотный коэффициент, принимаемая не менее 500 м.

- 2 Значения k_h определяют по <u>таблице Е.1</u> или по данным организаций по гидрометеорологии.
- 3 Для различных высот над уровнем моря одного горного района значение высотного коэффициента может быть различным.
- 4 Высотный коэффициент k_h для горных районов определяют по формуле*

$$k_h = \frac{S_g\left(h\right) - S_g\left(0\right)}{0,001 \times S_g\left(0\right) \times \left(h - h_0\right)} \text{, ho he mehee } k_h = 0 \text{ .}$$

Здесь: $S_g(h) = S_{g,50}(h)/1,4$, где $S_{g,50}$ - превышаемый в среднем один раз в 50 лет ежегодный максимум веса снегового покрова на высоте h проведения маршрутной снегосъемки в горном районе местности (см. 10.2);

 $S_{m{g}}(0)$ - нормативное значение веса снегового покрова (ВСП) на начальной высоте, относительно которой вычисляется высотный коэффициент;

h - высота, м, на которой проводятся измерения ВСП в горном районе, принимаемая не менее 500 м;

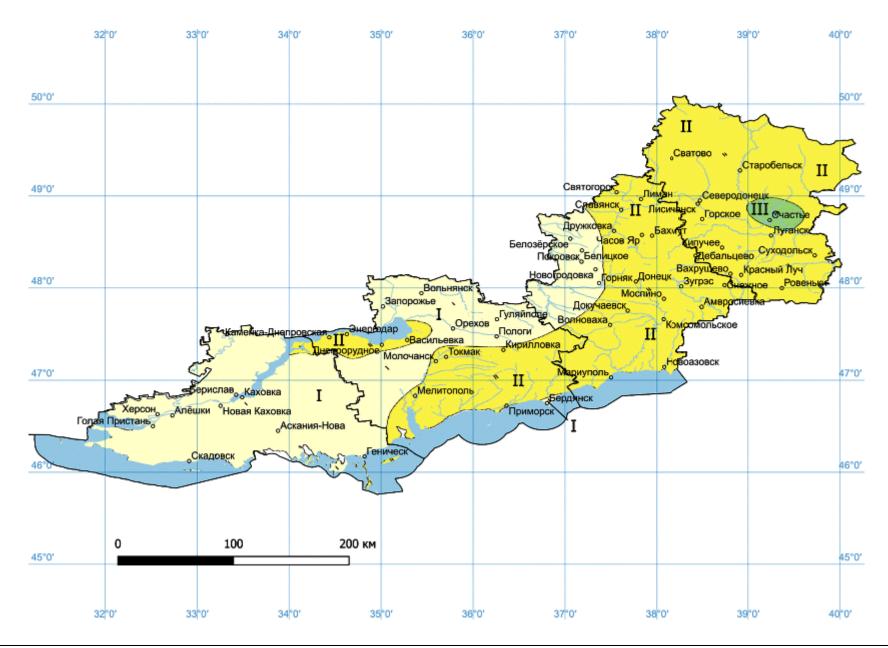
 h_0 - начальная высота, м, для которой установлено нормативное значение ВСП.

Карта 1 (Измененная редакция, Изм. N 2, 3, 5).

КАРТА 1,а. РАЙОНИРОВАНИЕ ТЕРРИТОРИИ ОСТРОВА САХАЛИН ПО ВЕСУ СНЕГОВОГО ПОКРОВА

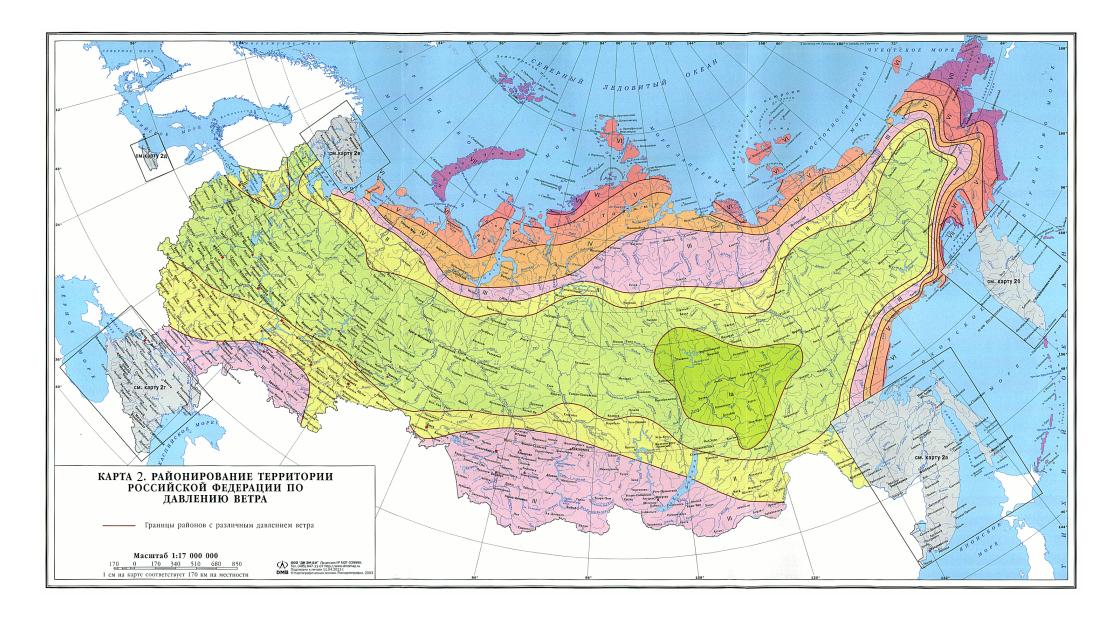
^{*} Формула и экспликация к ней соответствуют оригиналу. - Примечание изготовителя базы данных. Для других высот в данном районе местности используют полученное значение высотного коэффициента.

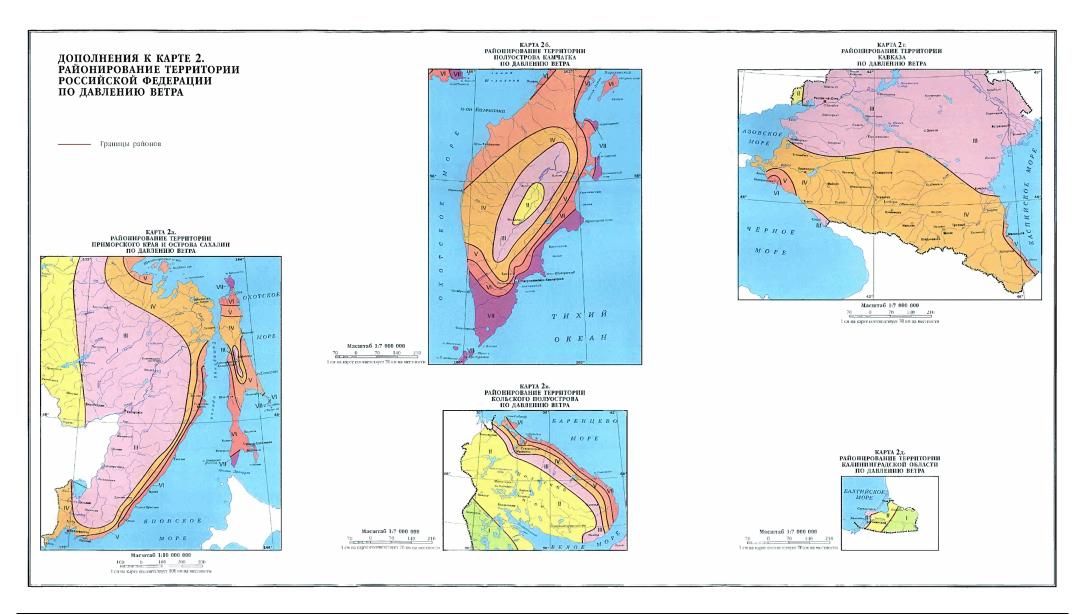
Внимание! Документ включен в доказательную базу техническо ИС «Кодекс: 6 поколение» Интранет


се "Примечания" Документ с изменениями и дополнениями (<u>новая редакция</u>)

СП 20.13330.2016 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85* (с Изменениями № 1-6)	
Применяется с 04.06.2017 взамен СП 20.13330.2011	

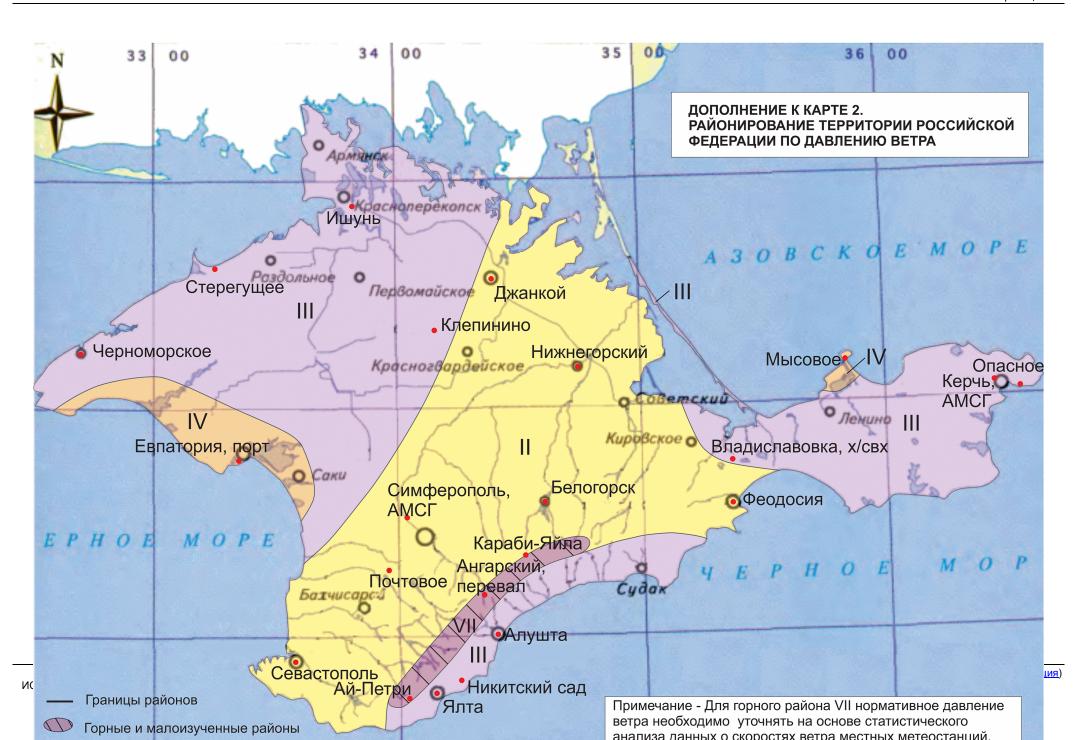
КАРТА 1,6. РАЙОНИРОВАНИЕ ТЕРРИТОРИИ РЕСПУБЛИКИ КРЫМ ПО ВЕСУ СНЕГОВОГО ПОКРОВА


КАРТА 1,в. Районирование территории Донецкой Народной Республики, Луганской Народной Республики, Запорожской области, Херсонской области по весу снегового покрова (дополнение к карте 1. Районирование территории Российской Федерации по весу снегового покрова)

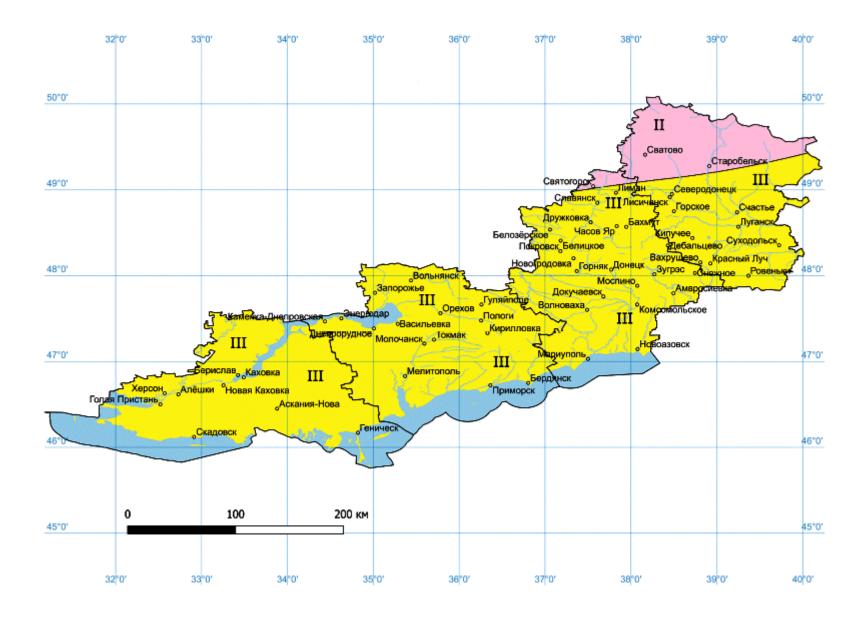

Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (новая редакция) ИС «Кодекс: 6 поколение» Интранет

СП 20.13330.2016 Нагрузки и воздействия. А	. Актуализированная редакция СНиП 2.01.07-85* (с Изменениями № 1	-6)
Применяется с 04.06.2017 взамен СП 20.13	13330.2011	

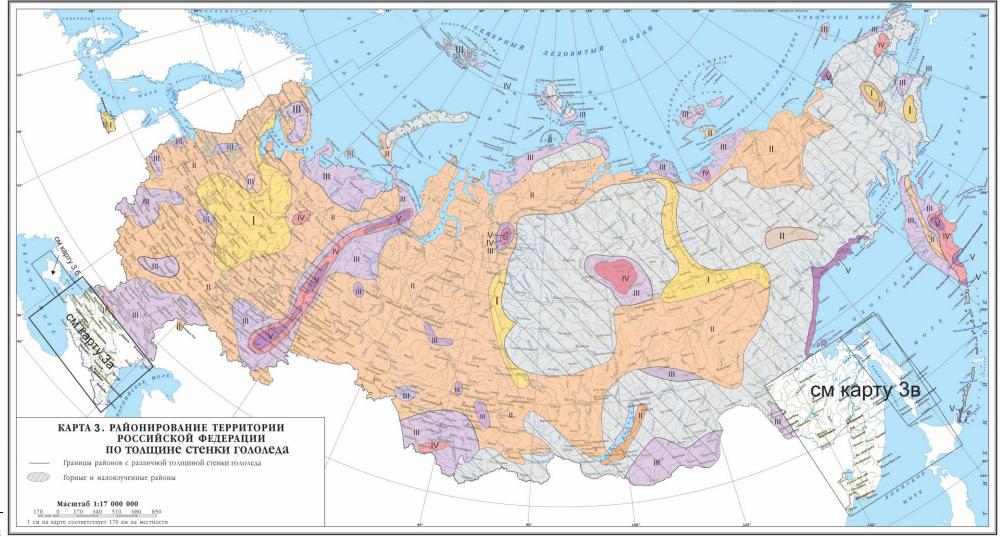
Карта 1,в (Введена дополнительно, <u>Изм. N 5</u>).



Оригинал Карты 2 см. по ссылке. - Примечание изготовителя базы данных.


СП 20.13330.2016 Нагрузки и воздействия. А	Актуализированная	редакция СНиП 2.01.07-85*	(с Изменениями № 1-6)
Применяется с 04.06.2017 взамен СП 20.13	3330.2011		

КАРТА 2,е. РАЙОНИРОВАНИЕ ТЕРРИТОРИИ РЕСПУБЛИКИ КРЫМ ПО ДАВЛЕНИЮ ВЕТРА

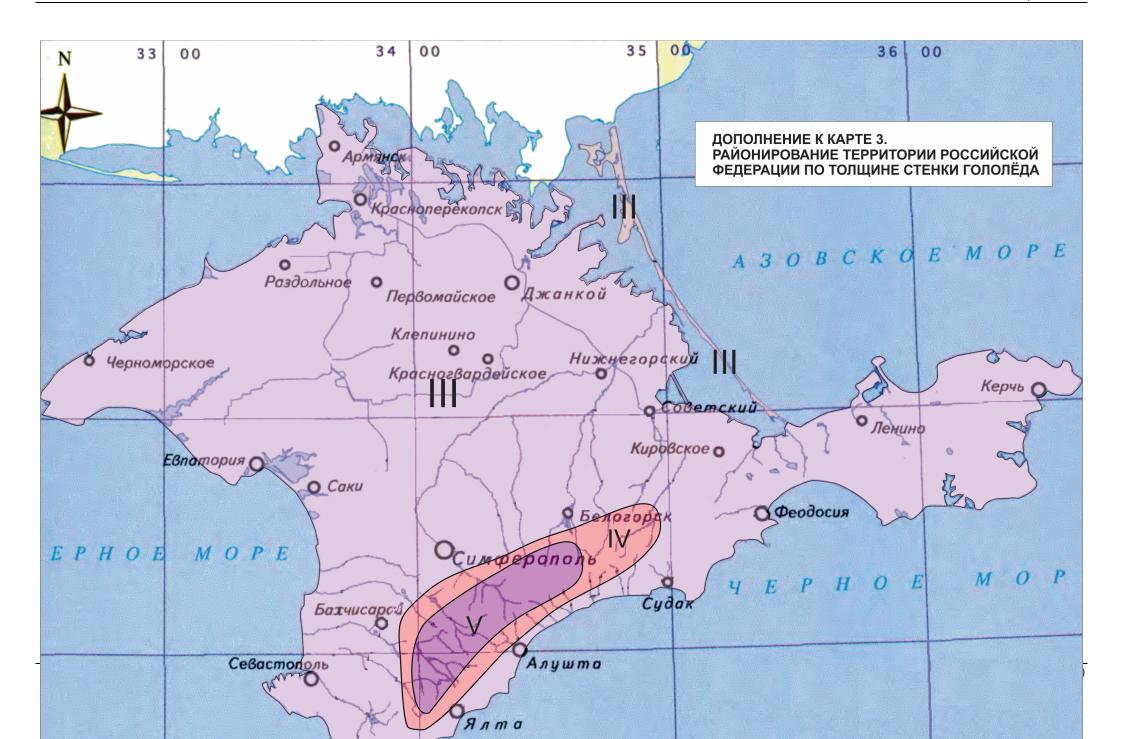

СП 20.13330.2016 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85* (с Изменениями № 1-6) Применяется с 04.06.2017 взамен СП 20.13330.2011

КАРТА 2,ж. Районирование территории Донецкой Народной Республики, Луганской Народной Республики, Запорожской области и Херсонской области по давлению ветра (дополнение к карте 2. Районирование территории Российской Федерации по давлению ветра)

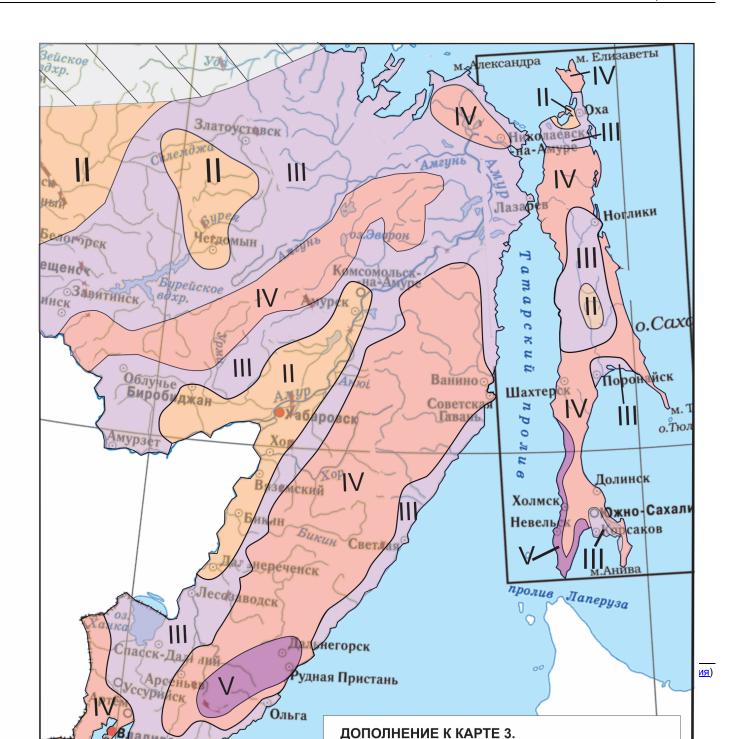
Карта 2,ж (Введена дополнительно, <u>Изм. N 5</u>).

СП 20.13330.2016 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85* (с Изменениями № 1-6) Применяется с 04.06.2017 взамен СП 20.13330.2011			
Применяется с 04.06.2017 взамен СП 20.13330.2011	Страница 161		

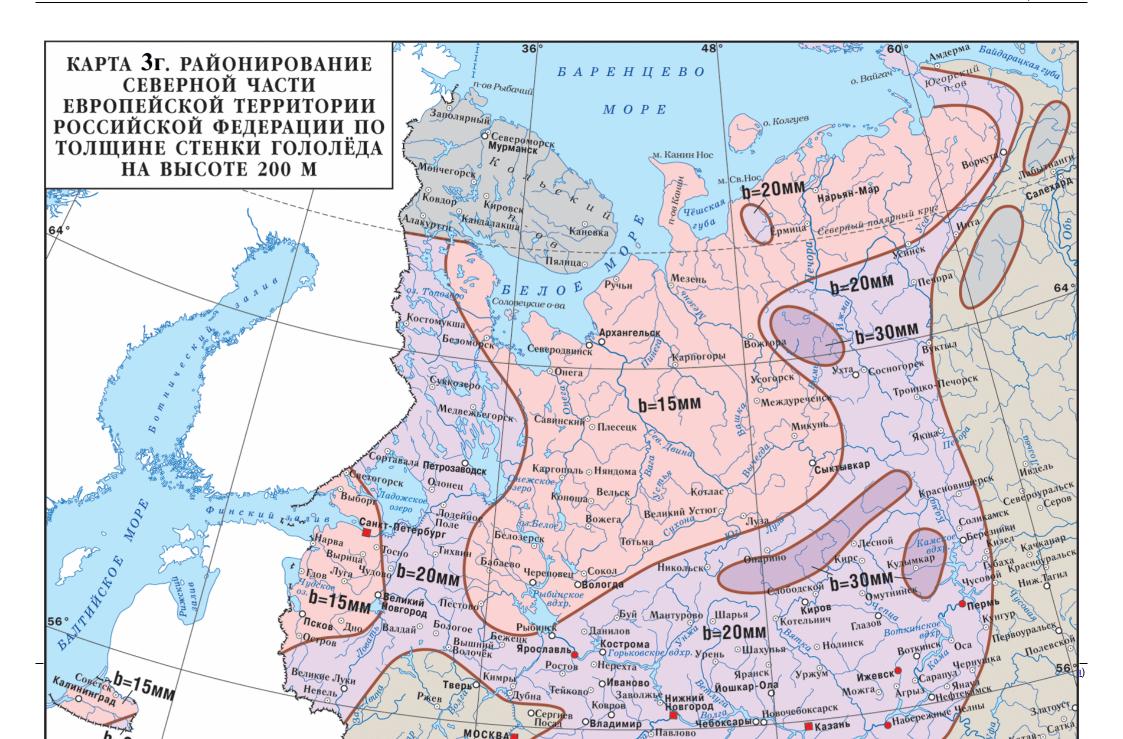
СП 20.13330.2016 Нагрузки и воздействия.	. Актуализированная	редакция СНиП	2.01.07-85*	(с Изменениями І	№ 1-6)
Применяется с 04.06.2017 взамен СП 20.	13330.2011				


Оригинал Карты 3 см. по ссылке. - Примечание изготовителя базы данных.

КАРТА 3,а. РАЙОНИРОВАНИЕ ТЕРРИТОРИИ ГОРНОГО КАВКАЗА ПО ТОЛЩИНЕ СТЕНКИ ГОЛОЛЁДА


СП 20.13330.2016 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85* (с Изменениями № 1-6)	
Применяется с 04.06.2017 взамен СП 20.13330.2011	

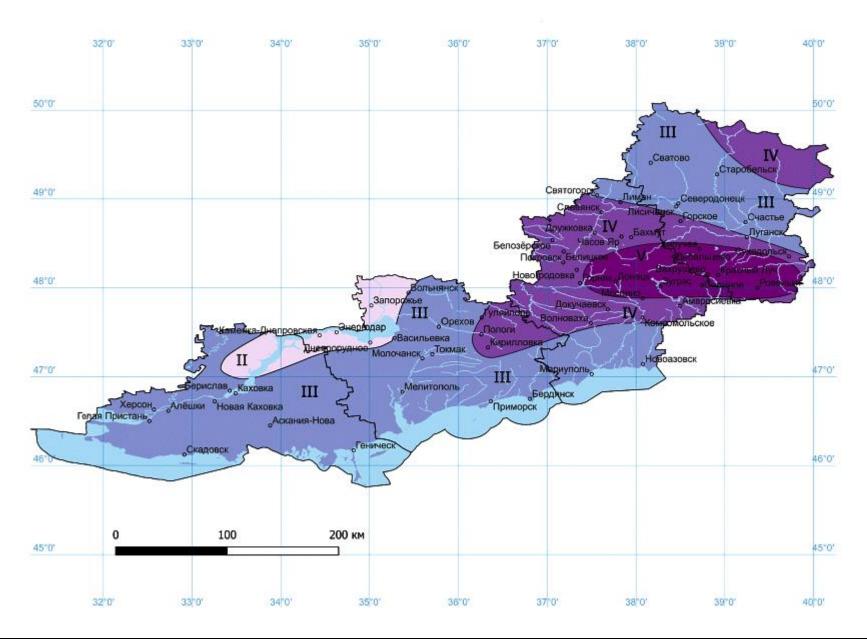
КАРТА 3,6. РАЙОНИРОВАНИЕ ТЕРРИТОРИИ РЕСПУБЛИКИ КРЫМ ПО ТОЛЩИНЕ СТЕНКИ ГОЛОЛЁДА



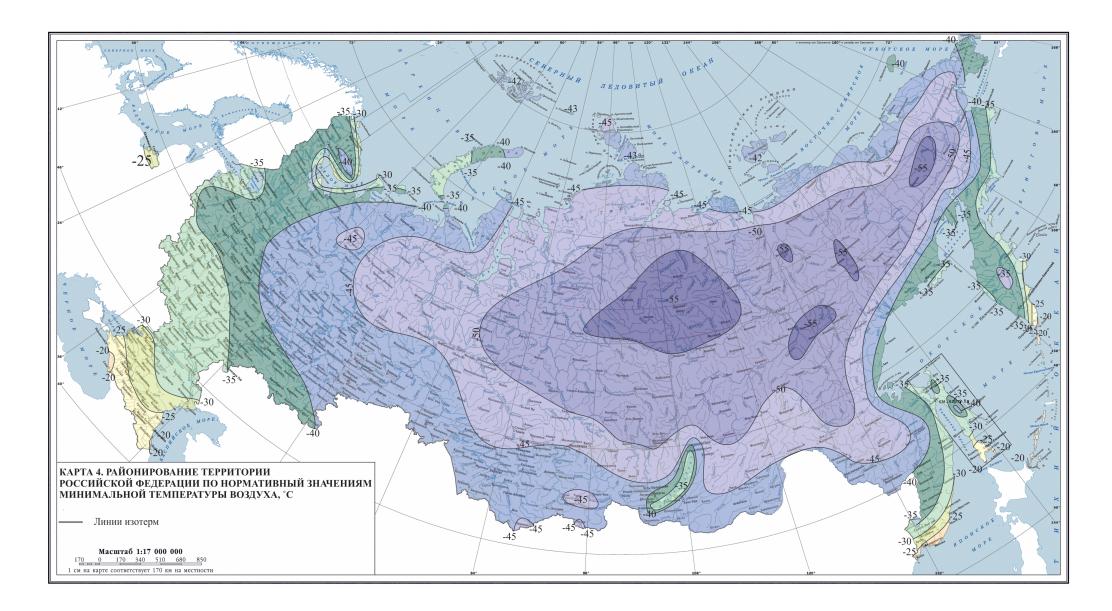
СП 20.13330.2016 Нагрузки и воздействия. А	Актуализированная	редакция СНиП 2.01.07-85*	(с Изменениями № 1-6)
Применяется с 04.06.2017 взамен СП 20.13	3330.2011		

КАРТА 3,В. РАЙОНИРОВАНИЕ ТЕРРИТОРИИ ПРИМОРСКОГО КРАЯ И ОСТРОВА САХАЛИН ПО ТОЛЩИНЕ СТЕНКИ ГОЛОЛЁДА

СП 20.13330.2016 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85* (с Изменениями № 1-6) Применяется с 04.06.2017 взамен СП 20.13330.2011				
Применяется с 04.06.2017 взамен СП 20.13330.2011	Страница 169			


СП 20.13330.2016 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85* (с Изменениями № 1-6) Ірименяется с 04.06.2017 взамен СП 20.13330.2011			
Применяется с 04.06.2017 взамен СП 20.13330.2011	Страница 171		

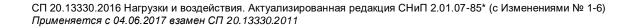
СП 20.13330.2016 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85* (с Изменениями № 1-6) Ірименяется с 04.06.2017 взамен СП 20.13330.2011			
Применяется с 04.06.2017 взамен СП 20.13330.2011	Страница 173		


КАРТА 3,ж. Районирование территории Донецкой Народной Республики, Луганской Народной Республики, Запорожской области и Херсонской области по толщине стенки гололеда (дополнение к карте 3. Районирование территории Российской Федерации по толщине стенки гололеда)

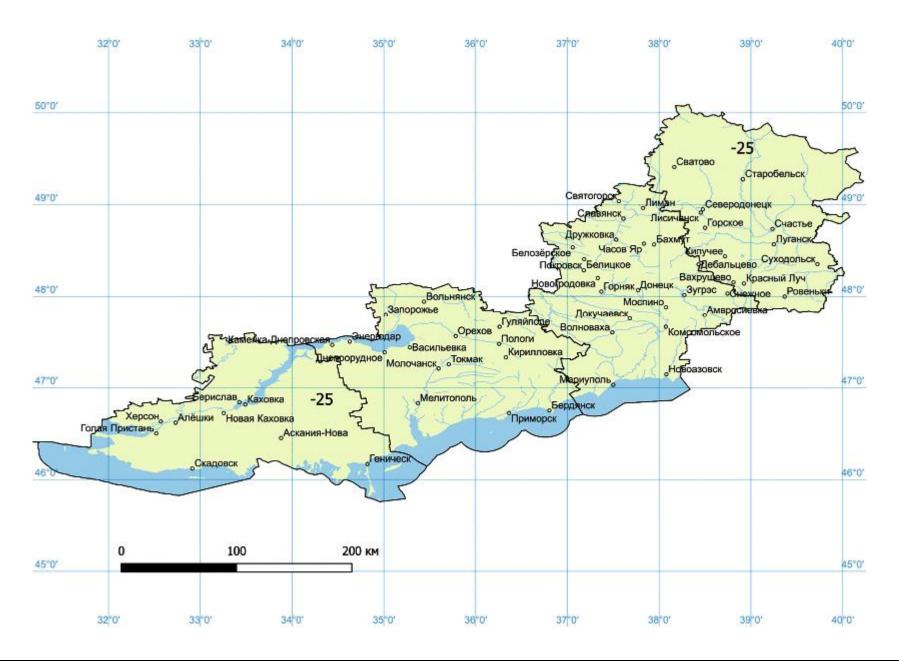
Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (новая редакция) ИС «Кодекс: 6 поколение» Интранет

СП 20.13330.2016 Нагрузки и воздействия. А	. Актуализированная редакция СНиП 2.01.07-85* (с Изменениями № 1	-6)
Применяется с 04.06.2017 взамен СП 20.13	13330.2011	

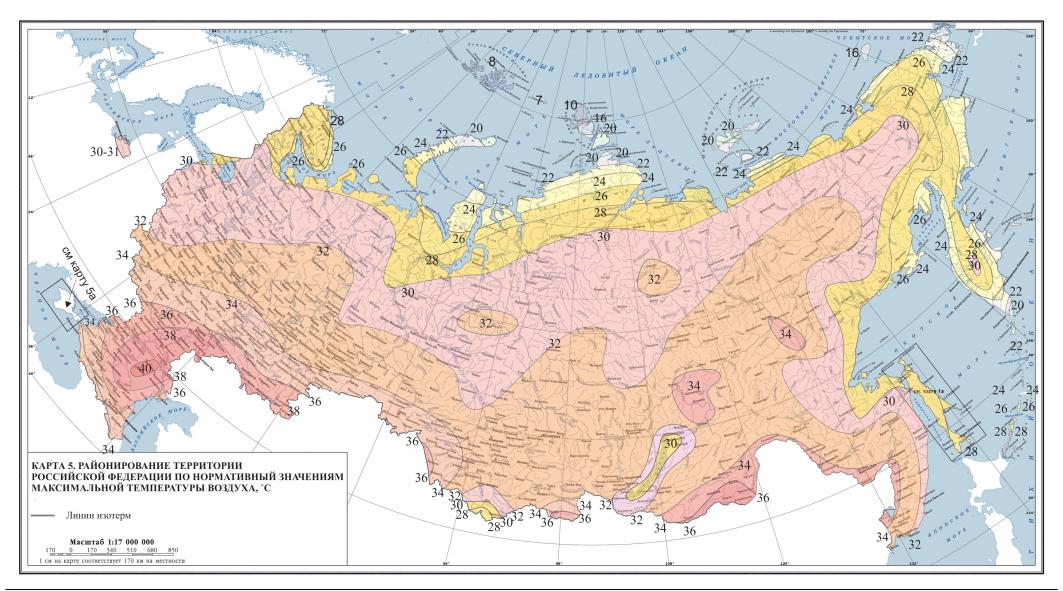
Карта 3,ж (Введена дополнительно, <u>Изм. N 5</u>).



Оригинал Карты 4 см. по ссылке. - Примечание изготовителя базы данных.

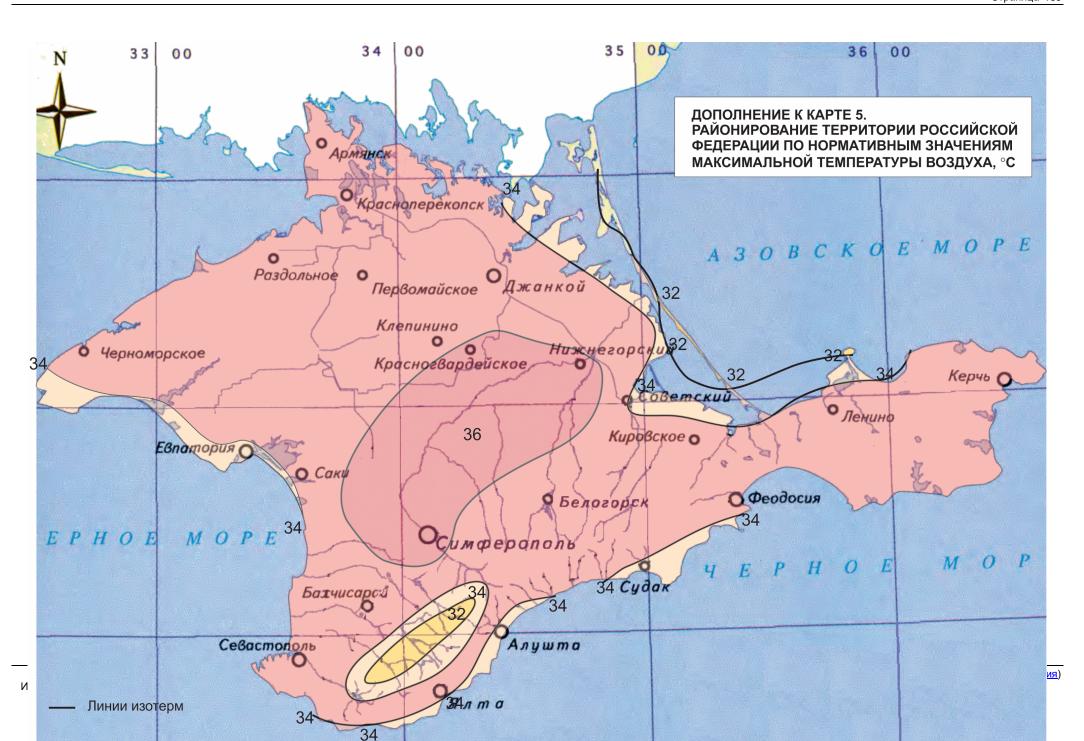

СП 20.13330.2016 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85* (с Изменениями № 1-6)	
Применяется с 04.06.2017 взамен СП 20.13330.2011	

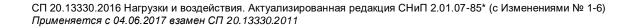
КАРТА 4,а. РАЙОНИРОВАНИЕ ТЕРРИТОРИИ РЕСПУБЛИКИ КРЫМ ПО НОРМАТИВНЫМ ЗНАЧЕНИЯМ МИНИМАЛЬНОЙ ТЕМПЕРАТУРЫ ВОЗДУХА, °С



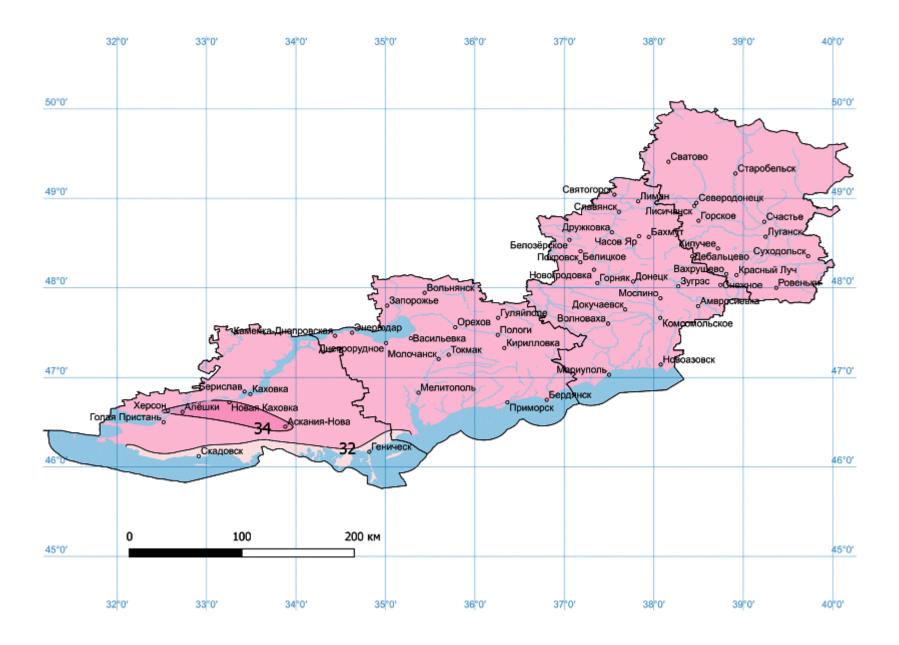
КАРТА 4,б. Районирование территории Донецкой Народной Республики, Луганской Народной Республики, Запорожской области и Херсонской области по нормативным значениям минимальной температуры воздуха, °C (дополнение к карте 3. Районирование территории Российской Федерации по нормативным значениям минимальной температуры воздуха, °C)

Карта 4,б (Введен дополнительно, <u>Изм. N 5</u>).




СП 20.13330.2016 Нагрузки и воздействия. А	Актуализированная	редакция СНиП 2.01.07-85*	(с Изменениями № 1-6)
Применяется с 04.06.2017 взамен СП 20.13	3330.2011		

Страница 184


Оригинал Карты 5 см. по ссылке. - Примечание изготовителя базы данных.

КАРТА 5,а. РАЙОНИРОВАНИЕ ТЕРРИТОРИИ РЕСПУБЛИКИ КРЫМ ПО НОРМАТИВНЫМ ЗНАЧЕНИЯМ МАКСИМАЛЬНОЙ ТЕМПЕРАТУРЫ ВОЗДУХА,°С

КАРТА 5,б. Районирование территории Донецкой Народной Республики, Луганской Народной Республики, Запорожской области и Херсонской области по нормативным значениям максимальной температуры воздуха, °C (дополнение к карте 3. Районирование территории Российской Федерации по нормативным значениям максимальной температуры воздуха, °C)

Карта 5,б (Введена дополнительно, <u>Изм. N 5</u>).

Приложение Ж

Основные требования к проведению модельных испытаний зданий и сооружений в аэродинамических трубах

- Ж.1 Целью проведения модельных испытаний зданий и сооружений в аэродинамических трубах является определение одного или нескольких из следующих параметров, необходимых для нормирования ветровых воздействий:
 - а) аэродинамические коэффициенты внутреннего (\mathcal{C}_i) и внешнего (\mathcal{C}_s) давлений;
 - б) аэродинамические коэффициенты лобового сопротивления (\mathcal{C}_{χ}), поперечной силы (\mathcal{C}_{y}) и крутящего момента (\mathcal{C}_{mz});
 - в) пиковые (положительные (c_{p+}) и отрицательные (c_{p-}) значения аэродинамических коэффициентов;
 - г) числа Струхаля *St*;
 - д) плотность вероятности $\, \, \phi_g(g) \, \, ф$ ункции порывов ветра $\, \, g(t) \, \, ,$ которая используется при оценке комфортности пешеходных зон;
- е) динамическая реакция сооружений или ее спектральные характеристики (энергетический спектр, авто- и взаимные корреляционные функции) при действии основного типа ветровой нагрузки, а также реакция, связанная с появлением аэродинамически неустойчивых колебаний (галопирование, различные виды флаттера) или с резонансным вихревым возбуждением.
- Ж.2 При проведении модельных испытаний должны быть установлены основные закономерности снегопереноса по покрытиям сооружений, на основе которых определяются коэффициенты формы μ , используемые при нормировании снеговых нагрузок.
- Ж.3 При проведении модельных аэродинамических испытаний должны быть выполнены определенные условия (критерии) подобия, которые обеспечивают получение наиболее достоверной информации о действующих на здание ветровых нагрузках. Основными и наиболее существенными критериями являются следующие:
 - геометрическое подобие, включая степень шероховатости внешних поверхностей моделей;
 - подобие структуры потока в аэродинамической трубе реальным ветровым режимам в месте строительства.

Примечание - В тех случаях, когда модельные испытания проводятся в аэродинамических трубах с гладким полом или приземный слой атмосферы моделируется за счет применения турбулизирующих решеток, использование полученных результатов для проектирования сооружений должно быть дополнительно обосновано;

- подобие по числу Рейнольдса $R_{\mathcal{E}}$ или выполнение более слабого требования о необходимости реализации автомодельного режима обтекания модели эквивалентного режиму обтекания сооружения;
 - подобие основных динамических характеристик модели и здания (при экспериментальном определении динамической реакции сооружения).
- Ж.4 При изготовлении моделей линейный масштаб моделирования M_{ℓ} выбирается таким образом, чтобы площадь S_m^{\ni} ее миделева сечения, перпендикулярного направлению потока, удовлетворяла условию

$$\Psi = \frac{S_m^{\ni}}{S_a} \le \Psi_{\text{mp}} \approx 0.08, \tag{\text{W.1}}$$

где S_a - площадь рабочей части аэродинамической трубы в месте установки модели;

Ψ- степень заполнения рабочей части;

 Ψ_{mp} - предельное значение $\ \Psi$, зависящее от типа аэродинамической установки.

В тех случаях, когда условие (Ж.1) не выполняется, результаты эксперимента нуждаются в корректировке. Ее методика, а также значение $\Psi_{\pi p}$ для каждой аэродинамической установки определяются экспериментально.

- Ж.5 Во избежание искажений результатов испытаний скорость потока в рабочей части аэродинамической трубы не должна превышать 60 м/с.
- Ж.6 Перед проведением экспериментальных исследований необходимо измерить скорость и уровень турбулентных пульсаций скорости потока (степень турбулентности) по высоте пограничного слоя на всей области размещения модели в рабочей части аэродинамической трубы.
- Ж.7 Аэродинамическая установка, используемое оборудование, приборы и инструменты должны быть аттестованы в соответствии с требованиями по их эксплуатации и использованию.
- Ж.8 При определении пиковых аэродинамических коэффициентов c_{p+} и c_{p-} интервал сглаживания экспериментальных данных должен соответствовать 1-3-секундному давлению ветра для реального сооружения.
 - Ж.9 При оформлении результатов модельных аэродинамических испытаний в отчетных документах должны быть приведены следующие данные:
 - а) линейный масштаб моделирования;

- б) состояние поверхности модели (гладкая, с искусственно нанесенной шероховатостью и др.) и ее соответствие поверхности реального сооружения;
- в) место расположения модели в рабочей части аэродинамической трубы и степень заполнения ее поперечного сечения;
- г) схема дренирования модели (при измерении средних и пиковых значений аэродинамических коэффициентов);
- д) основные характеристики набегающего потока, в том числе:
- способ моделирования приземного слоя атмосферы (генераторы вихрей и расположение элементов шероховатости на нижней стенке аэродинамической трубы, используемых для турбулизации потока);
- распределение средней скорости и интенсивности турбулентности потока по высоте сечения трубы в месте расположения модели с оценкой параметров их степенной или логарифмической аппроксимации.

Примечание - При использовании турбулизирующих решеток для моделирования приземного слоя атмосферы, кроме того, необходимо указать интегральные масштабы турбулентности и энергетический спектр набегающего потока;

- е) числа Рейнольдса, при которых проводились испытания, и обоснование реализации автомодельного режима обтекания модели, соответствующего режиму обтекания реального сооружения;
- ж) скорость или давление потока, по отношению к которым нормировались аэродинамические коэффициенты, давления, сил и моментов, а также числа Струхаля и энергетические спектры (при проведении соответствующих экспериментальных исследований).

Примечание - Для аэродинамических коэффициентов сил и моментов необходимо дополнительно указать оси, в направлении которых эти коэффициенты определялись, а также площади сечений, использованных при их определении;

- и) границы достоверности диапазона частот (при измерении энергетических спектров, пиковых аэродинамических коэффициентов, динамической реакции модели и других подобных явлений) с учетом собственных частот приемной и регистрирующей аппаратуры;
 - к) числа Струхаля St и основные безразмерные частоты срывы вихрей (при исследовании явлений срыва вихрей с боковых поверхностей сооружений).

Приложение Ж (Введено дополнительно, <u>Изм. N 2</u>).

Приложение И

Общая методика проведения модельных испытаний зданий и сооружений в аэродинамических трубах

Критерии подобия, указанные в <u>приложении Ж</u>, должны выполняться при проведении всех модельных испытаний зданий и сооружений в аэродинамических трубах.

Примечание - При решении некоторых специальных задач строительной аэродинамики, кроме того, может потребоваться выполнение других критериев Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (новая редакция)

ИС «Кодекс: 6 поколение» Интранет

подобия: по числам Ричардсона (Ri), Россби (Ro), Фруда (Fr) и др.

И.1 Геометрическое подобие

Следствием геометрического подобия модели и сооружения является равенство безразмерных координат соответствующих точек моделей и сооружения

$$\xi_i^{(\ni)} = \frac{x_i^{(\ni)}}{l_i^{(\ni)}}_{\mathsf{N}} \quad \xi_i = \frac{x_i}{l_i} \quad (i = 1, 2, 3), \tag{N.1}$$

где $x_i^{(\ni)}$ и x_i - координаты точек модели и сооружения соответственно в направлении i-й координатной оси (i =1, 2, 3); $l_i^{(\ni)}$ и l_i - соответствующие линейные размеры модели и сооружения соответственно в направлении i-й координатной оси (i =1, 2, 3).

Линейный масштаб M_I моделирования определяется соотношениями

$$M_l = \frac{l_1^{(\ni)}}{l_1} = \frac{l_2^{(\ni)}}{l_2} = \frac{l_3^{(\ni)}}{l_3}$$
 (N.2)

При изготовлении модели линейный масштаб моделирования M_l выбирается таким образом, чтобы степень заполнения Ψ поперечного сечения аэродинамической трубы удовлетворяла условию (Ж.1).

В тех случаях, когда это условие не выполняется, результаты эксперимента нуждаются в корректировке. Ее методика для каждой аэродинамической установки определяется экспериментально.

При модельных испытаниях зданий и сооружений $M_l \sim 10^{-2}$ - 10^{-3} ; для элементов решетчатых конструкций M_l принимают порядка единицы.

И.2 Подобие по параметру шероховатости

Подобие по параметру шероховатости 🛕 - частный случай геометрического подобия элементов шероховатости.

Учитывая, что в большинстве случаев M_l - величина порядка 10^{-2} - 10^{-3} , при изготовлении моделей точно удовлетворить этому равенству не удается. Для оценки влияния этого параметра на аэродинамические коэффициенты при проведении испытаний шероховатость модели обычно искусственно увеличивается. Для использования результатов продувок подобных моделей для назначения ветровых нагрузок, действующих на проектируемые сооружения необходимы дополнительные обоснования.

(Измененная редакция, <u>Изм. N 5</u>).

И.3 Моделирование по числу Рейнольдса

Число Рейнольдса Re определяется соотношением

$$Re = \frac{V_0 l_y}{v}, \qquad (M.3)$$

где V_0 - характерная средняя скорость ветра или потока в аэродинамической трубе (V_0^{\ni});

 l_y - размер сооружения или модели в направлении, перпендикулярном направлению скорости V_0 ;

 $v \approx 1,45 \cdot 10^{-5} \, \text{ м}^{\,2}/\text{c}$ - кинематическая вязкость воздуха.

Так как у имеет примерно одно и то же значение для потоков в аэродинамических трубах и в естественных условиях, а

$$M_{\nu} \equiv V_0^{\ni} / V_0 \approx 1 \,, \tag{V.4}$$

то отношение чисел Рейнольдса, соответствующих модели и натурному сооружению, пропорционально линейному масштабу M_l моделирования:

$$Re^{(\exists)}/Re \approx M_l$$
. (V.5)

Учитывая, что при модельных испытаниях реальных сооружений M_l <<1, то даже приближенно выполнить моделирование по числу R_e не удается; обычно при проведении испытаний пользуются более слабым требованием: числа Рейнольдса сооружения R_e и его модели $R_e^{(\exists)}$ должны находиться в одной и той же области автомодельного режима обтекания.

С практической точки зрения основной особенностью зоны автомодельности является то, что в ней аэродинамические коэффициенты слабо зависят от числа Рейнольдса. Это обстоятельство позволяет с достаточной степенью надежности использовать результаты модельных испытаний при назначении ветровых нагрузок, действующих на реальные сооружения.

Границы области автомодельности зависят от степени шероховатости 🛕 поверхности модели, ее относительных размеров и свойств набегающего потока.

Для сооружений с острыми кромками (поперечное сечение которых имеет угловые точки) нижняя граница зоны автомодельности $Re_1 \approx 10^2$ -10 3 ; и при

аэродинамических испытаниях их моделей можно считать, что условие автомодельности всегда выполняется.

Для сооружений с гладкой формой поперечного сечения нижняя граница зоны автомодельности, соответствующей его закризисному обтеканию, и числа Рейнольдса $R_a^{(∋)}$, реализованные при его модельных испытаниях, часто имеют близкие значения порядка 10 ⁵ -10 ⁶.

Выполнение условия автомодельности обтекания модели при проведении каждого эксперимента должно устанавливаться непосредственно на основе анализа полученных результатов.

Примечание - Выполнение условий геометрического подобия модели (с учетом степени шероховатости ее поверхности) и автомодельности ее обтекания в аэродинамической трубе обеспечивает выполнение критерия подобия по числу Струхаля при проведении экспериментальных исследований.

И.4 Для моделирования структуры погранслоя атмосферы при проведении модельных испытаний рекомендуется использовать аэродинамические трубы метеорологического или геофизического типа, длина рабочей части которых превышает шесть высот их поперечного сечения и имеющих прямоугольную форму.

Учитывая, что образование приземного слоя атмосферы при сильных ветрах и в трубах с длинной рабочей частью происходит единообразно, за счет взаимодействия потоков с соответствующими подстилающими поверхностями, в обоих этих случаях их структура - профиль средней составляющей скорости и энергетические спектры пульсационной составляющей - оказываются подобными.

Основным параметром, характеризующим свойства реальных ветровых режимов и потоков, реализуемых в аэродинамических трубах с длинной рабочей частью, является параметр шероховатости \mathcal{Z}_{Π} подстилающей поверхности.

За счет использования различных элементов шероховатости (турбулизаторов) и различных способов их размещения на полу аэродинамической трубы значение $z_0^{(\ni)}$ при испытаниях может изменяться в достаточно широких пределах. Кроме того, $z_0^{(\ni)}$ изменяется вдоль рабочей части трубы. Эти два обстоятельства позволяют выбрать условия испытаний, соответствующие реальным условиям.

Для использования результатов модельных испытаний в трубах с длинной рабочей частью вполне достаточно знать параметр шероховатости $z_0^{(3)}$; детальное описание энергетического спектра скорости потока при этом необязательно в силу его подобия спектру продольной составляющей скорости ветра.

Примечание - Иногда при испытаниях в трубах с короткой рабочей частью для турбулизации потока на выходе из сопла устанавливаются турбулизирующие решетки. Поскольку турбулентная структура подобных потоков существенно отличается от структуры погранслоя атмосферы, то для практического использования результаты, полученные при экспериментах с "решетчатой" турбулентностью, нуждаются в дополнительных обоснованиях.

И.5 Энергетические спектры скорости потока или давления, определяемые по результатам модельных испытаний в аэродинамических трубах, могут быть использованы на практике только для частот $f_1 \le f \le f_2$; здесь f_1 и f_2 являются соответственно нижней и верхней границами достоверного частотного диапазона и зависят от длины $\Delta T^{(3)}$ записи пульсаций давлений при эксперименте и интервала выборки (квантования) $\Delta \tau^{(3)}$ данных при статистической обработке этих записей. На практике допускается принять

$$f_1 = \frac{5M_{\ell}}{M_{\nu}\Delta T^{(3)}}, \tag{M.6a}$$

$$f_2 = \frac{M_{\ell}}{5M_{\nu}\Delta \tau^{(3)}}, \tag{M.66}$$

$$f_2 = \frac{M_{\ell}}{5M_{\nu}\Delta\tau^{(3)}},\tag{(M.66)}$$

где M_{ℓ} и M_{ν} определены в <u>И.1</u> и <u>И.3</u> соответственно. Приложение И (Введено дополнительно, Изм. N 2).

Приложение К

Нормативные значения веса снегового покрова для городов Российской Федерации

Таблица К.1 - Нормативные значения веса снегового покрова

N	Город, населенный пункт	$S_{\rm g}$, кН/м 2	
Республ	ика Адыгея (Адыгея)		
1	Майкоп	0,90	
Алтайск	ий край. Республика Алтай		
1	Барнаул	1,55	
2	Бийск	2,15	
3	Горно-Алтайск	1,90	
4	Рубцовск	1,00	
Амурска	Амурская область		
1	Благовещенск	0,50	

Внимание! Документ включен в доказательную базу технического регламента. Дополнительную информацию см. в ярлыке "Примечания" Документ с изменениями и дополнениями (новая редакция) ИС «Кодекс: 6 поколение» Интранет

Архангельская область		
1	Архангельск	1,80
2	Северодвинск	2,25
Астра	аханская область	
1	Астрахань	0,40
Респ	ублика Башкортостан	
1	Нефтекамск	2,05
2	Октябрьский	1,85
3	Салават	2,45
4	Стерлитамак	2,20
5	Уфа	2,45
Белго	ородская область	
1	Белгород	1,55
2	Старый Оскол	1,55
Брян	ская область	
1	Брянск	1,60
Республика Бурятия		
1	Улан-Уде	0,45
Владимирская область		
1	Владимир	1,85

			
2	Ковров	1,60	
3	Муром	1,55	
Волго	оградская область		
1	Волгоград	1,00	
2	Волжский	1,00	
3	Камышин	1,15	
Воло	огодская область		
1	Вологда	1,65	
2	Череповец	1,85	
Воро	Воронежская область		
1	Воронеж	1,55	
Респу	ублика Дагестан		
1	Каспийск	0,60	
2	Махачкала	0,60	
3	Хасавьюрт	0,65	
Доне	ецкая Народная Республика		
1	Артемовск (Бахмут)	1,05	
2	Донецк	1,1	
3	Дружковка	1,15	
4	Мариуполь	0,75	
5	Покровск	0,5	
•	•	•	

Еврейская автономная область			
1	Биробиджан	0,95	
Заба	йкальский край		
1	Чита	0,40	
Запо	рожская область		
1	Бердянск	0,45	
2	Запорожье	0,5	
3	Мелитополь	0,95	
Иван	овская область		
1	Иваново	1,70	
2	Кинешма	1,90	
Респ	Республика Ингушетия		
1	Назрань	0,65	
Ирку	тская область		
1	Ангарск	1,05	
2	Братск	1,25	
3	Иркутск	1,05	
4	Усть-Илимск	1,25	
Кабардино-Балкарская Республика			
1	Нальчик	0,50	

Калининградская область		
1	Калининград	0,80
Респ	ублика Калмыкия	
1	Элиста	0,70
Калу	жская область	
1	Калуга	1,90
Камч	атский край	
1	Петропавловск-Камчатский	4,10
Кара	чаево-Черкесская Республика	
1	Черкесск	0,60
Респ	ублика Карелия	
1	Петрозаводск	1,70
Кеме	ровская область	
1	Кемерово	1,80
2	Киселевск	1,60
3	Междуреченск	3,50
4	Новокузнецк	1,80
5	Прокопьевск	1,60
Кировская область		
1	Киров	2,10

Республика Коми			
1	Сыктывкар	2,45	
2	Ухта	2,15	
Кост	ромская область		
1	Кострома	1,80	
Крас	снодарский край		
1	Армавир	0,85	
2	Краснодар	1,10	
3	Кропоткин	0,70	
Крас	сноярский край		
1	Ачинск	1,25	
2	Канск	1,10	
3	Красноярск	1,35	
4	Норильск	2,40	
Респ	ıублика Крым		
1	Евпатория	0,45	
2	Ялта	0,50	
Курганская область			
1	Курган	1,30	
Курс	Курская область		

1	Железногорск	1,40	
2	Курск	1,25	
Ленингр	Тенинградская область		
1	Выборг	1,80	
2	Гатчина	1,40	
3	Пушкин	1,30	
4	Санкт-Петербург	1,30	
Липецк	ая область		
1	Елец	1,35	
2	Липецк	1,50	
Луганск	Луганская Народная Республика		
1	Лисичанск	0,9	
2	Луганск	1,0	
Магада	нская область		
1	Магадан	1,35	
Респуб.	Республика Марий Эл		
1 Йошк	1 Йошкар-Ола		
Республика Мордовия			
1	Саранск	1,60	
Москов	Московская область		

1	Дмитров	1,45
2	Клин	1,85
3	Коломна	1,45
4	Москва	1,45
5	Сергиев Посад	1,60
6	Серпухов	1,50
Мурман	жая область	
1	Мурманск	3,20
Нижегор	одская область	
1	Арзамас	1,60
2	Нижний Новгород	2,10
3	Саров	1,65
Новгоро	дская область	
1	Великий Новгород	1,55
Новосиб	ирская область	
1	Бердск	1,60
2	Новосибирск	1,60
Омская область		
1	Омск	1,35
Оренбургская область		

1	Бузулук	1,30	
2	Оренбург	1,25	
3	Орск	1,20	
Орлс	овская область		
1	Орел	1,40	
Пенз	енская область		
1	Кузнецк	1,80	
2	Пенза	1,45	
Перм	Пермский край		
1	Березники	2,45	
2	Пермь	1,95	
3	Соликамск	2,60	
4	Чайковский	1,85	
Прим	иорский край		
1	Уссурийск	0,70	
Пско	Псковская область		
1	Великие Луки	1,10	
2	Псков	1,30	
Ростовская область			
1	Волгодонск	0,85	

2	Новочеркасск	0,85	
	Повочеркасск	0,03	
3	Новошахтинск	0,80	
4	Ростов-на-Дону	0,85	
5	Таганрог	0,85	
6	Шахты	0,80	
Рязансі	ая область		
1	Рязань	1,55	
Самаро	кая область	·	
1	Новокуйбышевск	1,60	
2	Самара	1,60	
3	Сызрань	1,55	
4	Тольятти	1,65	
Сарато	вская область		
1	Саратов	1,40	
2	Энгельс	1,40	
Респуб.	Республика Саха (Якутия)		
1	Якутск	0,70	
Сахалинская область			
1	Южно-Сахалинск	3,85	
Свердловская область			

	-		
1	Екатеринбург	1,35	
2	Каменск-Уральский	1,25	
3	Нижний Тагил	1,50	
4	Первоуральск	1,40	
5	Серов	1,55	
Респуб	блика Северная Осетия - Алания		
1	Владикавказ	0,65	
Смоле	нская область		
1	Смоленск	1,60	
Ставр	Ставропольский край		
1	Ессентуки	0,65	
2	Кисловодск	0,65	
3	Невинномысск	0,75	
4	Пятигорск	0,45	
5	Ставрополь	0,95	
Тамбо	вская область		
1	Мичуринск	1,50	
2	Тамбов	1,40	
Республика Татарстан (Татарстан)			
1	Альметьевск	1,85	
	<u> </u>	•	

2	Бугульма	2,55			
3	Казань	2,30			
4	Набережные Челны	2,25			
5	Нижнекамск	2,10			
Тверск	Тверская область				
1	Тверь	1,60			
Томская область					
1	Северск	2,15			
2	Томск	2,15			
Республика Тыва					
1	Кызыл	0,50			
Тульск	Тульская область				
1	Новомосковск	1,45			
2	Тула	1,50			
Тюменская область					
1	Тобольск	1,55			
2	Тюмень	1,60			
Ханты-Мансийский автономный округ - Югра					
3	Нефтеюганск	1,80			
4	Нижневартовск	2,30			
-		•			

5	Сургут	1,80		
6	Ханты-Мансийск	1,95		
Ямало-	Ненецкий автономный округ			
7	Новый Уренгой	2,55		
Удмурт	ская Республика			
1	Воткинск	2,35		
2	Глазов	1,70		
3	Ижевск	2,15		
4	Сарапул	1,80		
Ульяно	Ульяновская область			
1	Ульяновск	1,40		
2	Димитровград	2,05		
Хабаро	Хабаровский край			
1	Комсомольск-на-Амуре	1,25		
2	Хабаровск	1,10		
Херсонская область				
1	Новая Каховка	0,5		
2	Херсон	0,5		
Челябинская область				
1	Златоуст	1,85		

		I	
2	Копейск	1,20	
3	Магнитогорск	1,30	
4	Миасс	1,10	
5	Челябинск	1,20	
Чеченская Республика			
1	Грозный	0,45	
Чувашская Республика - Чувашия			
1	Новочебоксарск	1,95	
2	Чебоксары	1,95	
Ярославская область			
1	Рыбинск	2,00	
2	Ярославль	1,80	

Приложение К (Введено дополнительно, <u>Изм. N 2</u>), (Измененная редакция, <u>Изм. N 5</u>).

Приложение Л

Значения предельных прогибов и перемещений зданий и их отдельных элементов, ограничиваемые исходя из технологических и конструктивных требований

- Л.1 Вертикальные предельные прогибы элементов конструкций, ограничиваемые исходя из технологических и конструктивных требований
- Л.1.1 Вертикальные предельные прогибы элементов конструкций, ограничиваемые исходя из технологических и конструктивных требований, приведены в <u>таблице Л.1</u>. Требования к зазорам между смежными элементами приведены в <u>Л.1.2</u>.

Таблица Л.1

Элементы конструкций	Предъявляемые требования	Вертикальные предельные прогибы f_u	Нагрузки для определения вертикальных прогибов
1 Балки крановых путей подмостовые и подвесные краны, управляемые:			
- с пола, в том числе тельферы (тали)		//250	От одного крана
- из кабины при группах режимов работы:	Технологические		
1K-6K		// 400	То же
7K		<i>l</i> /500	п
8К		/ /600	п
2 Балки, фермы, ригели, прогоны, плиты, настилы (включая поперечные ребра плит и настилов):			
а) покрытий и перекрытий при наличии перегородок под ними	Конструктивные	Принимаются в соответствии с <u>Л.1.2</u>	Приводящие к уменьшению зазора между несущими элементами конструкций и перегородками, расположенными под элементами
б) покрытий и перекрытий при наличии тельферов (талей), подвесных кранов, управляемых с пола	Технологические	//300 или а/150 (меньшее из двух)	Кратковременные с учетом нагрузки от одного крана или тельфера (тали) на одном пути
в) перекрытий, подверженных действию:			Наиболее неблагоприятное из следующих двух значений: 0,7 полных
- перемещаемых грузов,	Технологические	<i>l</i> /350	нормативных значений

материалов, узлов и элементов оборудования и других подвижных нагрузок (в том числе при безрельсовом напольном транспорте)			кратковременных нагрузок на перекрытие или нагрузки от одного транспортного средства
- нагрузок от рельсового транспорта:			
узкоколейного		//400	От одного состава вагонов (или одной напольной машины) на одном пути
ширококолейного		//500	То же
г) покрытий и перекрытий стоянок автомобилей в зданиях, при пролете <i>I</i> , м:	Технологические		Постоянные и длительные, а также нагрузки, указанные в таблице 8.3, с понижающим
<i>⊨</i> 6		//200	коэффициентом, равным 0,35, и снеговые
<i>⊨</i> 12		//250	нагрузки с понижающим коэффициентом, равным
1≥24		//300	0,5
3 Перемычки и навесные стеновые панели над оконными и дверными проемами (ригели и прогоны остекления)	Конструктивные	//200	Приводящие к уменьшению зазора между несущими элементами и оконным или дверным заполнением, расположенным под элементами

Обозначения, принятые в таблице Л.1:

I - расчетный пролет элемента конструкции;

а - шаг балок или ферм, к которым крепятся подвесные крановые пути.

Примечания

1 За расчетный пролет I элемента конструкции принимается расстояние между точками опирания

элемента.

Для консоли за расчетный пролет I следует принимать удвоенный ее вылет.

Для безбалочного железобетонного перекрытия за расчетный пролет I следует принимать:

- а) для монолитной конструкции расстояние между осями колонн;
- б) для сборной конструкции:
- для ригелей рам расстояние между осями колонн;
- для квадратных в плане пролетных плит размер диагонали плиты;
- для прямоугольных в плане пролетных плит с отношением сторон более 1,5:1 размер большей стороны плиты.
- 2 Особенности вычисления прогибов по позиции 2, перечисление б), указаны в <u>Д.1.8 приложения Д</u>. Схема для определения прогибов стропильных конструкций при наличии подвесных крановых путей приведена на <u>рисунке Д.2 приложения Д</u>.

Таблица Л.1 (Измененная редакция, Изм. N 5, 6).

Л.1.2 Зазор между нижней поверхностью элементов покрытий и перекрытий и верхом перегородок, расположенных под элементами, не должен превышать 40 мм. В тех случаях, когда выполнение указанных требований связано с увеличением жесткости покрытий и перекрытий, необходимо конструктивными мероприятиями избегать этого увеличения (например, размещением перегородок не под изгибаемыми балками, а рядом с ними).

Л.2 Горизонтальные предельные сближения крановых путей открытых эстакад, ограничиваемые исходя из технологических требований

Горизонтальные предельные сближения крановых путей открытых эстакад от горизонтальных и внецентренно приложенных вертикальных нагрузок от одного крана (без учета крена фундаментов), ограничиваемые исходя из технологических требований, следует принимать равными 20 мм.

Л.3 Горизонтальные предельные перемещения и прогибы зданий, отдельных элементов конструкций и опор конвейерных галерей от ветровой нагрузки и крена фундаментов

Л.3.1 Горизонтальные предельные перемещения зданий, ограничиваемые исходя из конструктивных требований (обеспечение целостности заполнения каркаса стенами, перегородками, оконными и дверными элементами), приведены в <u>таблице Л.2</u>. Указания по определению перемещений приведены в <u>Л.3.2</u>.

Горизонтальные перемещения зданий следует определять с учетом крена (неравномерных осадок) фундаментов. При этом нагрузки от веса оборудования, мебели, людей, складируемых материалов и изделий следует учитывать только при сплошном равномерном загружении всех перекрытий многоэтажных зданий

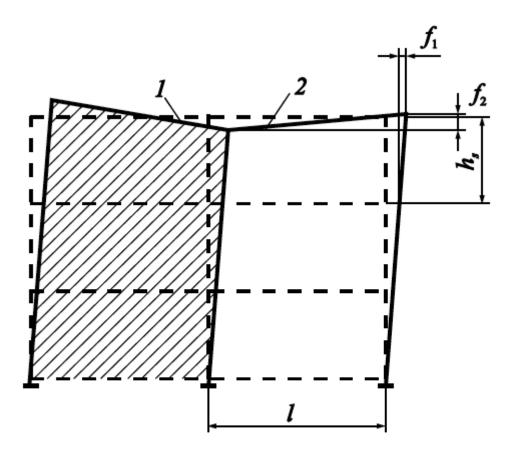
этими нагрузками (с учетом их снижения в зависимости от числа этажей), за исключением случаев, при которых по условиям нормальной эксплуатации предусматривается иное загружение.

Для зданий высотой до 40 м (и опор конвейерных галерей любой высоты), расположенных в ветровых районах I-IV, крен фундаментов, вызываемый ветровой нагрузкой, допускается не учитывать.

Таблица Л.2

Здания, стены и перегородки	Крепление стен и перегородок к каркасу здания	Предельные перемещения f_u
1 Многоэтажные здания, многоэтажные этажерки промышленных зданий	Любое	<i>h</i> /500
2 Один этаж многоэтажных зданий:		
а) стены и перегородки из кирпича, гипсобетона, железобетонных панелей	Жесткое	h _s /500
б) стены, облицованные естественным камнем, из керамических блоков	11	h_s /700
в) стены и перегородки из кирпича, гипсобетона, железобетонных панелей, облицованные естественным камнем, из керамических блоков	Податливое	h _s /300
3 Одноэтажные здания (с самонесущими стенами) высотой этажа $h_{\scriptscriptstyle S}$, м:		
$h_s \leq 6$	Податливое	$h_s / 150$
$h_s = 15$		$h_s/200$
$h_s \ge 30$		$h_s/300$
Обозначения, принятые в <u>таблице Л.2</u> :		

h - высота многоэтажных зданий, равная расстоянию от верха фундамента до оси ригеля покрытия;


 h_s - высота этажа в одноэтажных зданиях, равная расстоянию от верха фундамента до низа стропильных конструкций; в многоэтажных зданиях: для нижнего этажа - равная расстоянию от верха фундамента до оси ригеля перекрытия; для остальных этажей - равная расстоянию между осями смежных ригелей.

Примечания

- 1 Для верхних этажей многоэтажных зданий, проектируемых с использованием элементов покрытий одноэтажных зданий, горизонтальные предельные перемещения следует принимать такими же, как для одноэтажных зданий. При этом высоту верхнего этажа h_s принимают от оси ригеля междуэтажного перекрытия до низа стропильных конструкций.
- 2 К податливым креплениям относятся крепления стен или перегородок к каркасу, не препятствующие смещению каркаса (без передачи на стены или перегородки усилий, способных вызвать повреждения конструктивных элементов); к жестким крепления, препятствующие взаимным смещениям каркаса, стен или перегородок.
- 3 Для одноэтажных зданий с навесными стенами (а также при отсутствии жесткого диска покрытия) и многоэтажных этажерок промышленных зданий предельные перемещения допускается увеличивать на 30% (но принимать не более h_s /150 в пределах каждого этажа).

Таблица Л.2 (Измененная редакция, <u>Изм. N 5</u>).

 Π .3.2 При связевых каркасах многоэтажных зданий высотой более 40 м перекос этажных ячеек, примыкающих к диафрагмам жесткости, равный $f_1/h_s + f_2/l$ (рисунок Π .1), не должен превышать (см. таблицу Π .2): 1/500 - для позиции 2, перечисление а), 1/700 - для позиции 2, перечисление в).

1 – диафрагмы жесткости; 2 – этажные ячейки;

____ исходная схема каркаса до приложения нагрузки

Рисунок Л.1 - Схема перекоса этажных ячеек, примыкающих к диафрагмам жесткости в зданиях со связевым каркасом Л.3.3 Горизонтальные предельные прогибы стоек и ригелей фахверка, а также навесных стеновых панелей от ветровой нагрузки, ограничиваемые исходя из конструктивных требований, следует принимать равными //200, где / - расчетный пролет стоек или панелей.

Л.3.4 Горизонтальные предельные прогибы опор конвейерных галерей от ветровых нагрузок, ограничиваемые исходя из технологических требований, следует

принимать равными h/250, где h - высота опор от верха фундамента до низа ферм или балок.

Л.4 Предельные выгибы элементов междуэтажных перекрытий от усилий предварительного обжатия

Предельные выгибы f_u элементов междуэтажных перекрытий, ограничиваемые исходя из конструктивных требований, следует принимать равными 15 мм при I < 3 м и 40 мм - при I > 12 м (для промежуточных значений I предельные выгибы следует определять линейной интерполяцией).

Выгибы f следует определять от усилий предварительного обжатия, собственного веса элементов перекрытий и веса пола.

Приложение Л (Введено дополнительно, Изм. N 3).

Приложение М

Методика определения пульсационной составляющей основной ветровой нагрузки

М.1 При проектировании и расчетах несущих конструкций сооружения, имеющего сложную пространственную расчетную схему, требуется учет совместных колебаний сооружения по различным собственным формам и их взаимной корреляции при действии пульсационной составляющей ветровой нагрузки.

М.2 Пульсационные ветровые нагрузки являются динамическими и имеют случайную природу, поэтому в расчетах сооружений они должны учитываться исходя из статистических характеристик скорости ветра и наиболее неблагоприятных возможных мест приложения ветровой нагрузки.

Расчетные значения усилий Q_p и перемещений u_p в элементах конструкции от действия пульсационной ветровой нагрузки определяют по формулам:

$$Q_p = \sigma_Q \gamma_g \,, \tag{M.1}$$

$$u_p = \sigma_u \gamma_g$$
, (M.2)

где σ_Q и σ_u - стандарт усилий и перемещений, соответственно;

 γ_g =3,0 - коэффициент обеспеченности пульсационной составляющей ветровой нагрузки.

М.3 Статистические характеристики для определения пульсационной составляющей основной ветровой нагрузки

Стандарт перемещений σ_u и стандарт усилий σ_Q необходимо определять на основе численного расчета сооружения на действие пульсационной составляющей ветровой нагрузки, с применением методики решения линейной динамической задачи о вынужденных колебаниях сооружений при действии пульсационной составляющей ветровой нагрузки, приведенной в М.3-М.7.

При этом используют метод разложения усилий и перемещений в ряды по ортонормированным собственным формам колебаний сооружения.

М.3.1 Стандарт перемещений

Стандарт перемещений определяют по формуле

$$\sigma_u = \sqrt{D_u} , \qquad (M.3)$$

где D_u - дисперсия перемещений.

Дисперсию перемещений определяют как

$$D_{u} = \frac{\zeta_{10}^{2}}{(2\pi)^{4}} \sum_{k=1}^{s} \frac{1}{f_{k}^{2}} \sum_{k_{1}=1}^{s} \frac{1}{f_{k_{1}}^{2}} \overline{\varphi}_{k}(x) \overline{\varphi}_{k_{1}}(x) G_{kk_{1}}, \tag{M.4}$$

где $x = (x_1, x_2, x_3)$ - координаты, описывающие геометрию сооружения;

 ζ_{10} - расчетное значение коэффициента пульсации давления ветра на высоте 10 м, определяемое по таблице 11.3;

s - количество учитываемых собственных форм, определяемое согласно 11.1.8;

 f_k - k-я собственная частота, Гц;

 $\overline{\phi}_k(x)$ - вектор k-й собственной формы в точке x;

 G_{kk_1} - обобщенное воздействие, учитывающие совместные колебания сооружения по k-й u k_1 -й формам.

М.3.2 Стандарт усилий

Принимая, что усилие Q или другой внутренний силовой фактор связаны с перемещением линейной зависимостью

$$Q=L(u), (M.5)$$

где L(u) - линейная функция, матрица или оператор (интегральный, дифференциальный, смешанный), стандарт усилий определяют по формуле

$$\sigma_{Q} = \sqrt{D_{Q}} , \qquad (M.6)$$

где $\,D_{O}$ - дисперсия усилий, определяемая как

$$D_{Q} = \frac{\zeta_{10}^{2}}{(2\pi)^{4}} \sum_{k=1}^{s} \frac{1}{f_{k}^{2}} \sum_{k_{1}=1}^{s} \frac{1}{f_{k_{1}}^{2}} L(\overline{\varphi}_{k}(x)) L(\overline{\varphi}_{k_{1}}(x)) G_{kk_{1}}. \tag{M.7}$$

М.4 Обобщенное динамическое воздействие $\,G_{kk_1}\,$

Обобщенное динамическое воздействие $\,G_{kk_1}\,$, $\,$ Н 2 /м 2 , определяют как

$$G_{kk_1} = \int_A \int_A g_k^{(\nu)} (x^{(1)}) g_{k_1}^{(\nu)} (x^{(2)}) \xi_{kk_1}^2 (x^{(1)}, x^{(2)}) dx^{(1)} dx^{(2)} , \qquad (M.8)$$

где

$$g_k^{(v)}(x) = \overline{\phi}_k(x) \cdot \overline{w}(x) \cdot \zeta(z)$$
, (M.9)

$$\xi_{kk_1}^2(x^{(1)}, x^{(2)}) = \int_0^\infty \frac{S_{p,o}(f; x^{(1)}, x^{(2)})}{\Delta_k(f) \Delta_{k_1}(f)} df , \qquad (M.10)$$

$$\Delta_k^2(f) = \left[1 - (f/f_k)^2\right]^2 + \gamma_k (f/f_k)^2, \tag{M.11}$$

$$S_{p}(f;x^{(1)},x^{(2)}) \equiv \sigma_{0}^{2} S_{p,o} = \sigma_{o}^{2} S_{v,o}(f) r_{v}(f;x^{(1)},x^{(2)}), \qquad (M.12)$$

где $\overline{w}(x)$ - вектор средней составляющей ветровой нагрузки в точке x, H/M^2 ;

А - поверхность сооружения, на которую действует пульсационная ветровая нагрузка;

 $\zeta(z)$ - коэффициент пульсаций давления ветра;

z - высота над поверхностью земли в точке с координатами x, м;

 ξ_{kk_1} - локальный коэффициент динамичности, учитывающий совместную реакцию сооружения по k-й и k_1 -й формам;

f - частота, Гц;

 $S_{v,o}(f)$ - нормированный энергетический спектр продольной компоненты скорости вектора;

 $r_v(f;x^{(1)},x^{(2)})$ - коэффициент корреляции пульсаций скорости ветра в точках $x^{(1)}=(x_1^{(1)},\,x_2^{(1)},\,x_3^{(1)})$ и $x^{(2)}=(x_1^{(2)},\,x_2^{(2)},\,x_3^{(2)})$;

 σ_o - стандарт спектра скорости ветра.

Коэффициент пульсаций $\zeta(z)$ давления ветра на высоте z определяется по формуле (11.6) в соответствии с 11.1.8.

М.5 Нормированный энергетический спектр пульсационной составляющей скорости ветра $S_{
u,o}(f)$ описывают соотношением

$$S_{v,o}(f) = \frac{2}{3} \frac{\lambda^2}{f(1+\lambda^2)^{4/3}}$$
, (M.13)

$$\lambda = fL_x / V_0, \tag{M.14}$$

где λ - безразмерная частота;

f - частота для каждой из учитываемых форм колебаний, Гц;

 L_{x} = 1200 м - интегральный продольный масштаб турбулентности;

 $V_0 = 0.84_{v_{50}}$ - скорость ветра на высоте 10 м для места строительства.

(Измененная редакция, Изм. № 6).

М.6 Коэффициент корреляции $r_{\nu}(f;x^{(1)},x^{(2)})$ пульсаций скорости ветра в точках $x^{(1)}=\left(x_1^{(1)},\,x_2^{(1)},\,x_3^{(1)}\right)$ и $x^{(2)}=\left(x_1^{(2)},\,x_2^{(2)},\,x_3^{(2)}\right)$ определяют по формуле $r_{\nu}(f;x^{(1)},x^{(2)})=\exp\left[-fT_{\nu}(x^{(1)},x^{(2)})\right]$, (М.15)

$$T_{\nu}(x^{(1)}, x^{(2)}) = \frac{\Delta l_{\nu}(x^{(1)}, x^{(2)})}{V_0},$$
 (M.16)

$$\Delta l_{\nu}^{2} = \sum_{i=1}^{3} b_{i}^{2} \Delta x_{i}^{2} ; \Delta x_{i} = \left| x_{i}^{(1)} - x_{i}^{(2)} \right|, \tag{M.17}$$

где $T_{v}\!\left(\!x^{(1)},\,x^{(2)}\!\right)$ - период корреляции порывов в точках $x^{(1)}$ и $x^{(2)}$;

 V_0 - скорость ветра на высоте 10 м;

 $\Delta x_i(i=1,2,3)$ - проекции расстояния между точками $x^{(1)}$ и $x^{(2)}$ на оси правой системы координат, в которой ось Ox_1 ориентирована по направлению средней скорости ветра, а ось Ox_3 направлена вертикально вверх;

 $b_i(i=1,2,3)$ - эмпирические константы, принимаемые $b_1=20$; $b_2=b_3=8$.

М.7 Предельную частоту колебаний $f_{
m lim}$ и соответствующее число s учитываемых форм колебаний определяют из условия

$$\xi_s^2 \le \left(1 + \varepsilon_{\pi}\right) v_0^2,\tag{M.18}$$

где ξ_s - коэффициент динамичности для формы колебаний s, который может быть получен на основе приближенного подхода при $k=k_1=s$ из уравнения

$$\xi_{kk_1}^2 = \int_0^\infty \frac{s_{v,o}(f)}{\Delta_k(f)\Delta_{k_1}(f_1)} r_m(f) df , \qquad (M.19)$$

где ξ_{kk_1} - общий для всего сооружения коэффициент динамичности;

 v_0 - квазистатическая составляющая скорости ветра, определяемая из уравнения

$$v_0^2 = \int_0^\infty S_{v,o}(f) r_m(f) df$$
 (M.20)

Здесь

$$r_m(f) = r(f, T_{v,m}), \tag{M.21}$$

 $T_{v,m}$ - единый (осредненный для всего сооружения) период корреляции;

 $\varepsilon_{_{\rm II}}$ \leq 0,01 - точность динамического расчета.

Коэффициент динамичности для формы s с точностью до величины ϵ_{π} равен единице.

М.8 Для каждого варианта нагружения расчетные значения перемещений и внутренних усилий в элементах конструкции от действия пульсационной составляющей ветровой нагрузки при проведении расчетов необходимо учесть совместно с перемещениями и внутренними усилиями от средней составляющей ветровой нагрузки соответствующего направления.

Приложение М (Введено дополнительно, Изм. N 5).

Библиография

[1] Федеральный закон от 29 декабря 2004 г. N 190-ФЗ "Градостроительный кодекс Российской Федерации"

УДК 69:006 OKC 91.040.01

Ключевые слова: нагрузка; воздействие; сочетание нагрузок; постоянная, длительная, кратковременная, особая нагрузка; прогиб, перемещение

(Введено дополнительно, <u>Изм. N 1</u>), (Измененная редакция, <u>Изм. N 2, 3</u>).

Редакция документа с учетом изменений и дополнений подготовлена АО "Кодекс"

СП 20.13330.2016 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85* (с Изменениями № 1-6) (Источник: ИСС

СП 20.13330.2016 Нагрузки и воздействия.	Актуализированная	редакция СНиП 2.01.07-85* ((с Изменениями № 1-6)
Применяется с 04.06.2017 взамен СП 20.1	3330.2011		

Страница 219

"КОДЕКС")